Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Neuron ; 112(16): 2783-2798.e9, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38959892

RESUMO

The lateral septum (LS) is composed of heterogeneous cell types that are important for various motivated behaviors. However, the transcriptional profiles, spatial arrangement, function, and connectivity of these cell types have not been systematically studied. Using single-nucleus RNA sequencing, we delineated diverse genetically defined cell types in the LS that play distinct roles in reward processing. Notably, we found that estrogen receptor 1 (Esr1)-expressing neurons in the ventral LS (LSEsr1) are key drivers of reward seeking via projections to the ventral tegmental area, and these neurons play an essential role in methamphetamine (METH) reward and METH-seeking behavior. Extended exposure to METH increases the excitability of LSEsr1 neurons by upregulating hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, thereby contributing to METH-induced locomotor sensitization. These insights not only elucidate the intricate molecular, circuit, and functional architecture of the septal region in reward processing but also reveal a neural pathway critical for METH reward and behavioral sensitization.


Assuntos
Metanfetamina , Neurônios , Recompensa , Núcleos Septais , Animais , Camundongos , Neurônios/fisiologia , Neurônios/metabolismo , Metanfetamina/farmacologia , Núcleos Septais/fisiologia , Núcleos Septais/metabolismo , Masculino , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Vias Neurais/fisiologia , Camundongos Endogâmicos C57BL , Comportamento de Procura de Droga/fisiologia
2.
Nat Chem Biol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965384

RESUMO

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain-of-function mutation p.E1099K, resulting in growth suppression, apoptosis and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 to recruit the SCFFBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCFFBXO22. Overall, we present a potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a new FBXO22-recruitment strategy for TPD.

3.
Onco Targets Ther ; 17: 339-344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644954

RESUMO

Gastric adenocarcinoma (GAS) is a rare subtype of mucinous adenocarcinoma characterized by gastric differentiation and is unrelated to human papillomavirus (HPV) infection. This report discusses a 40-year-old female who presented with abdominal distension accompanied by increased abdominal circumference. CT of the abdomen and pelvis showed a large 21.0*12.7*26.0 cm mass later diagnosed as GAS combined with squamous cell carcinoma on surgical pathology. Immunohistological staining of GAS was positive for CK7, MUC6, PAX-8 CEA, and P53 (wild type) and negative for CDX2, CK20, ER, PR, P16, and WT1. The proliferative index (Ki-67) was 20%. Immunohistochemical staining of squamous cell carcinoma was positive for P16 and P53 (wild type), and the proliferative index (Ki-67) was 90%. However, the pathogenesis and molecular mechanisms of GAS have not been fully elucidated. As more cases are identified and reported, additional targeted therapies can be developed and tested in these patients.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38547701

RESUMO

Interindividual exposure differences have been identified in oral targeted antineoplastic drugs (OADs) owing to the pharmacogenetic background of the patients and their susceptibility to multiple factors, resulting in insufficient efficacy or adverse effects. Therapeutic drug monitoring (TDM) can prevent sub-optimal concentrations of OADs and improve their clinical treatment. This study aimed to develop and validate an LC-MS/MS method for the simultaneous quantification of 11 OADs (gefitinib, imatinib, lenvatinib, regorafenib, everolimus, osimertinib, sunitinib, tamoxifen, lapatinib, fruquintinib and sorafenib) and 2 active metabolites (N-desethyl sunitinib and Z-endoxifen) in human plasma. Protein precipitation was used to extract OADs from the plasma samples. Chromatographic separation was performed using an Eclipse XDB-C18 (4.6 × 150 mm, 5 µm) column with a gradient elution of the mobile phase composed of 2 mM ammonium acetate with 0.1 % formic acid in water (solvent A) and methanol (solvent B) at a flow rate of 0.8 mL/min. Mass analysis was performed using positive ion mode electrospray ionization in multiple-reaction monitoring mode. The developed method was validated following FDA bioanalytical guidelines. The calibration curves were linear over the range of 2-400 ng/mL for gefitinib, imatinib, lenvatinib, regorafenib, and everolimus; 1-200 ng/mL for osimertinib, sunitinib, N-desethyl sunitinib, tamoxifen, and Z-endoxifen; and 5-1000 ng/mL for lapatinib, fruquintinib, and sorafenib, with all coefficients of correlation above 0.99. The intra- and inter-day imprecision was below 12.81 %. This method was successfully applied to the routine TDM of gefitinib, lenvatinib, regorafenib, osimertinib, fruquintinib, and sorafenib to optimize the dosage regimens.


Assuntos
Acrilamidas , Compostos de Anilina , Antineoplásicos , Indóis , Neoplasias , Compostos de Fenilureia , Piridinas , Pirimidinas , Quinolinas , Tamoxifeno/análogos & derivados , Humanos , Sunitinibe , Mesilato de Imatinib , Sorafenibe , Lapatinib , Cromatografia Líquida/métodos , Monitoramento de Medicamentos/métodos , Espectrometria de Massa com Cromatografia Líquida , Gefitinibe , Everolimo , Espectrometria de Massas em Tandem/métodos , Antineoplásicos/uso terapêutico , Tamoxifeno/uso terapêutico , Neoplasias/tratamento farmacológico , Solventes , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos
5.
Sci Rep ; 14(1): 4509, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402266

RESUMO

The 5'-mRNA-cap formation is a conserved process in protection of mRNA in eukaryotic cells, resulting in mRNA stability and efficient translation. In humans, two methyltransferases, RNA cap guanine-N7 methyltransferase (hRNMT) and cap-specific nucleoside-2'-O-methyltransferase 1 (hCMTr1) methylate the mRNA resulting in cap0 (N7mGpppN-RNA) and cap1 (N7mGpppN2'-Om-RNA) formation, respectively. Coronaviruses mimic this process by capping their RNA to evade human immune systems. The coronaviral nonstructural proteins, nsp14 and nsp10-nsp16, catalyze the same reactions as hRNMT and hCMTr1, respectively. These two viral enzymes are important targets for development of inhibitor-based antiviral therapeutics. However, assessing the selectivity of such inhibitors against human corresponding proteins is crucial. Human RNMTs have been implicated in proliferation of cancer cells and are also potential targets for development of anticancer therapeutics. Here, we report the development and optimization of a radiometric assay for hRNMT, full kinetic characterization of its activity, and optimization of the assay for high-throughput screening with a Z-factor of 0.79. This enables selectivity determination for a large number of hits from various screening of coronaviral methyltransferases, and also screening hRNMT for discovery of inhibitors and chemical probes that potentially could be used to further investigate the roles RNMTs play in cancers.


Assuntos
Infecções por Coronavirus , Coronavirus , Humanos , Coronavirus/genética , Guanina/metabolismo , Metiltransferases/metabolismo , Capuzes de RNA/metabolismo , RNA Mensageiro/genética , RNA Viral/genética , Proteínas não Estruturais Virais/genética
6.
J Ethnopharmacol ; 326: 117909, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38350503

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gancao Decoction (GCD) is widely used to treat cholestatic liver injury. However, it is unclear whether is related to prevent hepatocellular necroptosis. AIM OF THE STUDY: The purpose of this study is to clarify the therapeutic effects of GCD against hepatocellular necroptosis induced by cholestasis and its active components. MATERIALS AND METHODS: We induced cholestasis model in wild type mice by ligating the bile ducts or in Nlrp3-/- mice by intragastrical administering Alpha-naphthylisothiocyanate (ANIT). Serum biochemical indices, liver pathological changes and hepatic bile acids (BAs) were measured to evaluate GCD's hepatoprotective effects. Necroptosis was assessed by expression of hallmarkers in mice liver. Moreover, the potential anti-necroptotic effect of components from GCD were investigated and confirmed in ANIT-induced cholestasis mice and in primary hepatocytes from WT mouse stimulated with Tumor Necrosis Factor alpha (TNF-α) and cycloheximide (CHX). RESULTS: GCD dose-dependently alleviated hepatic necrosis, reduced serum aminotranferase activity in both BDL and ANIT-induced cholestasis models. More importantly, the expression of hallmarkers of necroptosis, including MLKL, RIPK1 and RIPK3 phosphorylation (p- MLKL, p-RIPK1, p-RIPK3) were reduced upon GCD treatment. Glycyrrhetinic acid (GA), the main bioactive metabolite of GCD, effectively protected against ANIT-induced cholestasis, with decreased expression of p-MLKL, p-RIPK1 and p-RIPK3. Meanwhile, the expression of Fas-associated death domain protein (FADD), long isoform of cellular FLICE-like inhibitory protein (cFLIPL) and cleaved caspase 8 were upregulated upon GA treatment. Moreover, GA significantly increased the expression of active caspase 8, and reduced that of p-MLKL in TNF-α/CHX induced hepatocytes necroptosis. CONCLUSIONS: GCD substantially inhibits necroptosis in cholestatic liver injury. GA is the main bioactive component responsible for the anti-necroptotic effects, which correlates with upregulation of c-FLIPL and active caspase 8.


Assuntos
Colestase , Medicamentos de Ervas Chinesas , Ácido Glicirretínico , Glycyrrhiza , Camundongos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Caspase 8 , Necroptose , Fígado , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Colestase/patologia , Ácido Glicirretínico/farmacologia , 1-Naftilisotiocianato/toxicidade
7.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873443

RESUMO

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.

8.
Exp Hematol ; 130: 104135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072134

RESUMO

Epigenetic regulators, such as the polycomb repressive complex 2 (PRC2), play a critical role in both normal development and carcinogenesis. Mutations and functional dysregulation of PRC2 complex components, such as EZH2, are implicated in various forms of cancer and associated with poor prognosis. This study investigated the epigenetic vulnerabilities of acute myeloid leukemia (AML) and myelodysplastic/myeloproliferative disorders (MDS/MPN) by performing a chemical probe screen in patient cells. Paradoxically, we observed increased sensitivity to EZH2 and embryonic ectoderm development (EED) inhibitors in AML and MDS/MPN patient cells harboring EZH2 mutations. Expression analysis indicated that EZH2 inhibition elicited upregulation of pathways responsible for cell death and growth arrest, specifically in patient cells with mutant EZH2. The identified EZH2 mutations had drastically reduced catalytic activity, resulting in lower cellular H3K27me3 levels, and were associated with decreased EZH2 and PRC2 component EED protein levels. Overall, this study provides an important understanding of the role of EZH2 dysregulation in blood cancers and may indicate disease etiology for these poor prognosis AML and MDS/MPN cases.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Leucemia Mieloide Aguda , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Leucemia Mieloide Aguda/genética , Epigênese Genética , Mutação
9.
Commun Biol ; 6(1): 1272, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104184

RESUMO

Cbl-b is a RING-type E3 ubiquitin ligase that is expressed in several immune cell lineages, where it negatively regulates the activity of immune cells. Cbl-b has specifically been identified as an attractive target for cancer immunotherapy due to its role in promoting an immunosuppressive tumor environment. A Cbl-b inhibitor, Nx-1607, is currently in phase I clinical trials for advanced solid tumor malignancies. Using a suite of biophysical and cellular assays, we confirm potent binding of C7683 (an analogue of Nx-1607) to the full-length Cbl-b and its N-terminal fragment containing the TKBD-LHR-RING domains. To further elucidate its mechanism of inhibition, we determined the co-crystal structure of Cbl-b with C7683, revealing the compound's interaction with both the TKBD and LHR, but not the RING domain. Here, we provide structural insights into a novel mechanism of Cbl-b inhibition by a small-molecule inhibitor that locks the protein in an inactive conformation by acting as an intramolecular glue.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/química , Ligação Proteica , Conformação Molecular , Fosforilação
10.
ACS Med Chem Lett ; 14(12): 1746-1753, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116405

RESUMO

The transcription factor YAP-TEAD is the downstream effector of the Hippo pathway which controls cell proliferation, apoptosis, tissue repair, and organ growth. Dysregulation of the Hippo pathway has been correlated with carcinogenic processes. A co-crystal structure of TEAD with its endogenous ligand palmitic acid (PA) as well as with flufenamic acid (FA) has been disclosed. Here we report the development of HC-258, which derives from FA and possesses an oxopentyl chain that mimics a molecule of PA as well as an acrylamide that reacts covalently with TEAD's cysteine. HC-258 reduces the CTGF, CYR61, AXL, and NF2 transcript levels and inhibits the migration of MDA-MB-231 breast cancer cells. Co-crystallization with hTEAD2 confirmed that HC-258 binds within TEAD's PA pocket, where it forms a covalent bond with its cysteine.

11.
bioRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961297

RESUMO

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here, we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain of function mutation p.E1099K, resulting in growth suppression, apoptosis, and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 in a covalent and reversible manner to recruit the SCF FBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCF FBXO22 . Overall, we present a highly potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a novel FBXO22-dependent TPD strategy.

12.
Eur J Pharmacol ; 961: 176193, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37981257

RESUMO

Bile acid (BA)-induced apoptosis is a common pathologic feature of cholestatic liver injury. Glycyrrhetinic acid (GA) is the hepatoprotective constituent of licorice. In the present study, the anti-apoptotic potential of GA was investigated in wild type and macrophage-depleted C57BL/6 mice challenged with alpha-naphthyl isothiocyanate (ANIT), and hepatocytes stimulated with Taurocholic acid (TCA) or Tumor necrosis factor-alpha (TNF-α). Apoptosis was determined by TUNEL positive cells and expression of executioner caspases. Firstly, we found that GA markedly alleviated liver injury, accompanied with reduced positive TUNEL-staining cells, and expression of caspases 3, 8 and 9 in mice modeled with ANIT. Secondly, GA mitigated apoptosis in macrophage-depleted mice with exacerbated liver injury and augmented cell apoptosis. In vitro study, pre-treatment with GA reduced the expression of activated caspases 3 and 8 in hepatocytes stimulated with TCA, but not TNF-α. The ability of GA to ameliorate apoptosis was abolished in the presence of Tauroursodeoxycholic Acid (TUDCA), a chemical chaperon against Endoplasmic reticulum stress (ER stress). Furthermore, GA attenuated the over-expression of Glucose regulated protein 78 (GRP78), and blocked all three branches of Unfolded protein reaction (UPR) in cholestatic livers of mice induced by ANIT. GA also downregulated C/EBP homologous protein (CHOP) expression, accompanied with reduced expression of Death receptor 5 (DR5) and activation of caspase 8 in both ANIT-modeled mice and TCA-stimulated hepatocytes. The results indicate that GA inhibits ER stress-induced hepatocyte apoptosis in cholestasis, which correlates with blocking CHOP/DR5/Caspase 8 pathway.


Assuntos
Colestase , Ácido Glicirretínico , Camundongos , Animais , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/uso terapêutico , Caspase 8/metabolismo , Camundongos Endogâmicos C57BL , Colestase/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Hepatócitos/metabolismo , Fator de Transcrição CHOP/metabolismo , Caspases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Bioorg Med Chem Lett ; 95: 129488, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37770003

RESUMO

The Hippo pathway regulates organ size and tissue homeostasis by controlling cell proliferation and apoptosis. The YAP-TEAD transcription factor, the downstream effector of the Hippo pathway, regulates the expression of genes such as CTGF, Cyr61, Axl and NF2. Aberrant Hippo activity has been identified in multiple types of cancers. Flufenamic acid (FA) was reported to bind in a liphophilic TEAD palmitic acid (PA) pocket, leading to reduction of the expression of Axl and NF2. Here, we show that the replacement of the trifluoromethyl moiety in FA by aromatic groups, directly connected to the scaffold or separated by a linker, leads to compounds with better affinity to TEAD. Co-crystallization studies show that these compounds bind similarly to FA, but deeper within the PA pocket. Our studies identified LM-41 and AF-2112 as two TEAD binders that strongly reduce the expression of CTGF, Cyr61, Axl and NF2. LM-41 gave the strongest reduction of migration of human MDA-MB-231 breast cancer cells.


Assuntos
Ácido Flufenâmico , Neoplasias , Humanos , Ácido Flufenâmico/farmacologia , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Via de Sinalização Hippo , Neoplasias/genética
14.
ACS Infect Dis ; 9(10): 1918-1931, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37728236

RESUMO

A collaborative, open-science team undertook discovery of novel small molecule inhibitors of the SARS-CoV-2 nsp16-nsp10 2'-O-methyltransferase using a high throughput screening approach with the potential to reveal new inhibition strategies. This screen yielded compound 5a, a ligand possessing an electron-deficient double bond, as an inhibitor of SARS-CoV-2 nsp16 activity. Surprisingly, X-ray crystal structures revealed that 5a covalently binds within a previously unrecognized cryptic pocket near the S-adenosylmethionine binding cleft in a manner that prevents occupation by S-adenosylmethionine. Using a multidisciplinary approach, we examined the mechanism of binding of compound 5a to the nsp16 cryptic pocket and developed 5a derivatives that inhibited nsp16 activity and murine hepatitis virus replication in rat lung epithelial cells but proved cytotoxic to cell lines canonically used to examine SARS-CoV-2 infection. Our study reveals the druggability of this newly discovered SARS-CoV-2 nsp16 cryptic pocket, provides novel tool compounds to explore the site, and suggests a new approach for discovery of nsp16 inhibition-based pan-coronavirus therapeutics through structure-guided drug design.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Ratos , Animais , SARS-CoV-2/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Metiltransferases
15.
J Pathol ; 261(2): 125-138, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37555360

RESUMO

Due to limited biopsy samples, ~20% of DCIS lesions confirmed by biopsy are upgraded to invasive ductal carcinoma (IDC) upon surgical resection. Avoiding underestimation of IDC when diagnosing DCIS has become an urgent challenge in an era discouraging overtreatment of DCIS. In this study, the metabolic profiles of 284 fresh frozen breast samples, including tumor tissues and adjacent benign tissues (ABTs) and distant surrounding tissues (DSTs), were analyzed using desorption electrospray ionization-mass spectrometry (DESI-MS) imaging. Metabolomics analysis using DESI-MS data revealed significant differences in metabolite levels, including small-molecule antioxidants, long-chain polyunsaturated fatty acids (PUFAs) and phospholipids between pure DCIS and IDC. However, the metabolic profile in DCIS with invasive carcinoma components clearly shifts to be closer to adjacent IDC components. For instance, DCIS with invasive carcinoma components showed lower levels of antioxidants and higher levels of free fatty acids compared to pure DCIS. Furthermore, the accumulation of long-chain PUFAs and the phosphatidylinositols (PIs) containing PUFA residues may also be associated with the progression of DCIS. These distinctive metabolic characteristics may offer valuable indications for investigating the malignant potential of DCIS. By combining DESI-MS data with machine learning (ML) methods, various breast lesions were discriminated. Importantly, the pure DCIS components were successfully distinguished from the DCIS components in samples with invasion in postoperative specimens by a Lasso prediction model, achieving an AUC value of 0.851. In addition, pixel-level prediction based on DESI-MS data enabled automatic visualization of tissue properties across whole tissue sections. Summarily, DESI-MS imaging on histopathological sections can provide abundant metabolic information about breast lesions. By analyzing the spatial metabolic characteristics in tissue sections, this technology has the potential to facilitate accurate diagnosis and individualized treatment of DCIS by inferring the presence of IDC components surrounding DCIS lesions. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/diagnóstico por imagem , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Ductal de Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/patologia , Antioxidantes , Espectrometria de Massas , Neoplasias da Mama/diagnóstico por imagem
16.
ACS Chem Biol ; 18(8): 1846-1853, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37556795

RESUMO

Increased expression and hyperactivation of the methyltransferase SET domain bifurcated 1 (SETDB1) are commonly observed in cancer and central nervous system disorders. However, there are currently no reported SETDB1-specific methyltransferase inhibitors in the literature, suggesting that this is a challenging target. Here, we disclose that the previously reported small-molecule ligand for SETDB1's triple tudor domain, (R,R)-59, is unexpectedly able to increase SETDB1 methyltransferase activity both in vitro and in cells. Specifically, (R,R)-59 promotes in vitro SETDB1-mediated methylation of lysine 64 of the protein kinase Akt1. Treatment with (R,R)-59 also increased Akt1 threonine 308 phosphorylation and activation, a known consequence of Akt1 methylation, resulting in stimulated cell proliferation in a dose-dependent manner. (R,R)-59 is the first SETDB1 small-molecule positive activator for the methyltransferase activity of this protein. Mechanism of action studies show that full-length SETDB1 is required for significant in vitro methylation of an Akt1-K64 peptide and that this activity is stimulated by (R,R)-59 primarily through an increase in catalytic activity rather than a change in S-adenosyl methionine binding.


Assuntos
Histona-Lisina N-Metiltransferase , Domínios PR-SET , Histona-Lisina N-Metiltransferase/metabolismo , Ligantes , Metilação , Domínio Tudor
17.
Breast Cancer Res Treat ; 202(1): 173-183, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37528265

RESUMO

PURPOSE: The tumor-stroma ratio (TSR) is a common histological parameter that measures stromal abundance and is prognostic in breast cancer (BC). However, more evidence is needed on the predictive value of the TSR for the pathological complete response (pCR) to neoadjuvant chemotherapy (NAC). The purpose of this study was to determine the importance of the TSR in predicting pCR in NAC settings. METHOD: We evaluated the TSR on pretreatment biopsies of 912 BC patients from four independent Chinese hospitals and investigated the potential value of the TSR for predicting pCR. Meanwhile, stromal tumor-infiltrating lymphocytes (sTILs) were assessed, and we evaluated the predictive value of the combination of sTILs and TSR (TSRILs). RESULTS: Patients with low stroma showed a higher pCR rate than those with high stroma among the four independent hospitals, and in multivariate analysis, the TSR was proven to be an independent predictor for pCR to NAC with an odds ratio of 1.945 (95% CI 1.230-3.075, P = 0.004). Moreover, we found that TSRILs could improve the area under the curve (AUC) for predicting pCR from 0.750 to 0.785 (P = 0.039); especially in HER2-negative BCs, the inclusion of TSRILs increased the AUC from 0.801 to 0.835 in the discovery dataset (P = 0.048) and 0.734 to 0.801 in the validation dataset (P = 0.003). CONCLUSION: TSR and sTILs can be easily measured in pathological routines and provide predictive information without additional cost; with more evidence from clinical trials, TSRILs could be a candidate to better stratify patients in NAC settings.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linfócitos do Interstício Tumoral/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Prognóstico , Terapia Neoadjuvante
18.
Nat Biotechnol ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563299

RESUMO

Germ-free (GF) mice, which are depleted of their resident microbiota, are the gold standard for exploring the role of the microbiome in health and disease; however, they are of limited value in the study of human-specific pathogens because they do not support their replication. Here, we develop GF mice systemically reconstituted with human immune cells and use them to evaluate the role of the resident microbiome in the acquisition, replication and pathogenesis of two human-specific pathogens, Epstein-Barr virus (EBV) and human immunodeficiency virus (HIV). Comparison with conventional (CV) humanized mice showed that resident microbiota enhance the establishment of EBV infection and EBV-induced tumorigenesis and increase mucosal HIV acquisition and replication. HIV RNA levels were higher in plasma and tissues of CV humanized mice compared with GF humanized mice. The frequency of CCR5+ CD4+ T cells throughout the intestine was also higher in CV humanized mice, indicating that resident microbiota govern levels of HIV target cells. Thus, resident microbiota promote the acquisition and pathogenesis of two clinically relevant human-specific pathogens.

19.
Growth Factors ; 41(3): 152-164, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37428861

RESUMO

We investigated the mechanism of ETS-translocation variant 1 (ETV1)/lncRNA-MAFG-AS1 in pancreatic cancer (PC). MAFG-AS1 and ETV1 levels in PC cell lines and HPNE cells were determined using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB). After transfection with sh-MAFG-AS1, PC cell invasion, migration, proliferation, and epithelial-mesenchymal transition (EMT)-related proteins were measured by 5-ethynyl-2'-deoxyuridine (EdU), Transwell assay, and WB. The binding between ETV1 and MAFG-AS1 was studied using dual-luciferase assay and chromatin immunoprecipitation. The interactions between MAFG-AS1, IGF2BP2, and ETV1 were tested. Combined experiments were further performed using sh-MAFG-AS1 and pcDNA-ETV1 simultaneously. ETV1/MAFG-AS1 was highly expressed in PC cells. Blocking MAFG-AS1 inhibited the malignant behaviors of PC cells. ETV1 induced MAFG-AS1 transcription in PC cells. MAFG-AS1 stabilized ETV1 mRNA by recruiting IGF2BP2. ETV1 overexpression partially antagonized the suppression of silencing MAFG-AS1 on PC cells. ETV1-induced MAFG-AS1 stabilized the ETV1 expression by recruiting IGF2BP2 and promoted PC cell migration, invasion, proliferation, and EMT.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transição Epitelial-Mesenquimal/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras/genética , Fator de Transcrição MafG/genética , Fator de Transcrição MafG/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias Pancreáticas
20.
J Med Chem ; 66(12): 7785-7803, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37294077

RESUMO

An under-explored target for SARS-CoV-2 is the S-adenosyl methionine (SAM)-dependent methyltransferase Nsp14, which methylates the N7-guanosine of viral RNA at the 5'-end, allowing the virus to evade host immune response. We sought new Nsp14 inhibitors with three large library docking strategies. First, up to 1.1 billion lead-like molecules were docked against the enzyme's SAM site, leading to three inhibitors with IC50 values from 6 to 50 µM. Second, docking a library of 16 million fragments revealed 9 new inhibitors with IC50 values from 12 to 341 µM. Third, docking a library of 25 million electrophiles to covalently modify Cys387 revealed 7 inhibitors with IC50 values from 3.5 to 39 µM. Overall, 32 inhibitors encompassing 11 chemotypes had IC50 values < 50 µM and 5 inhibitors in 4 chemotypes had IC50 values < 10 µM. These molecules are among the first non-SAM-like inhibitors of Nsp14, providing starting points for future optimization.


Assuntos
COVID-19 , Metiltransferases , Humanos , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , RNA Viral/genética , Exorribonucleases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA