Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 11: 679571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195100

RESUMO

Brucella, a notorious intracellular pathogen, causes chronic infections in many mammals, including humans. The twin-arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane; protein substrates translocated by Brucella include ABC transporters, oxidoreductases, and cell envelope biosynthesis proteins. Previously, we showed that a Tat mutant of Brucella melitensis M28 exhibits reduced survival within murine macrophages. In this study, we compared the host responses elicited by wild-type M28 and its Tat-mutant strains ex vivo. We utilized label-free quantitative proteomics to assess proteomic changes in RAW264.7 macrophages after infection with M28 and its Tat mutants. A total of 6085 macrophage proteins were identified with high confidence, and 79, 50, and 99 proteins were differentially produced upon infection with the Tat mutant at 4, 24, and 48 hpi, respectively, relative to the wild-type infection. Gene ontology and KEGG enrichment analysis indicated that immune response-related proteins were enriched among the upregulated proteins. Compared to the wild-type M28 infection, the most upregulated proteins upon Tat-mutant infection included the cytosolic nucleic acid signaling pathway-related proteins IFIH1, DHX58, IFI202, IFI204, and ISG15 and the NF-κB signaling pathway-related proteins PTGS2, CD40, and TRAF1, suggesting that the host increases the production of these proteins in response to Tat mutant infection. Upregulation of some proteins was further verified by a parallel reaction monitoring (PRM) assay. ELISA and qRT-PCR assays indicated that Tat mutant infection significantly induced proinflammatory cytokine (TNF-α and IL-6) and nitric oxide (NO) production. Finally, we showed that the Tat mutant displays higher sensitivity to nitrosative stress than the wild type and that treatment with the NO synthase inhibitor L-NMMA significantly increases the intracellular survival of the Tat mutant, indicating that NO production contributes to restricting Tat mutant survival within macrophages. Collectively, this work improves our understanding of host immune responses to Tat mutants and provides insights into the mechanisms underlying the attenuated virulence of Tat mutants.


Assuntos
Brucella melitensis , Brucelose , Animais , Arginina , Humanos , Macrófagos , Camundongos , Proteômica
2.
Infect Immun ; 88(4)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31932328

RESUMO

Streptococcus suis serotype 2 is an important bacterial pathogen of swine and is also an emerging zoonotic agent that may be harmful to human health. Although the virulence genes of S. suis have been extensively studied, the mechanisms by which they damage the central immune organs have rarely been studied. In the current work, we wanted to uncover more details about the impact and mechanisms of S. suis on specific populations of thymic and immune cells in infected mice. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) assays revealed that S. suis infection induced apoptosis in CD3+, CD14+, and epithelial cells from the thymus. S. suis infection resulted in a rapid depletion of mitochondrial permeability and release of cytochrome c (CytC) and apoptosis-inducing factor (AIF) through upregulation of Bax expression and downregulation of Bcl-xl and Bcl2 expression in thymocytes. Moreover, S. suis infection increased cleavage of caspase-3, caspase-8, and caspase-9. Thus, S. suis induced thymocyte apoptosis through a p53- and caspase-dependent pathway, which led to a decrease of CD3+ cells in the thymus, subsequently decreasing the numbers of CD4+ and CD8+ cells in the peripheral blood. Finally, expression dysregulation of proinflammatory cytokines in the serum, including interleukin 2 (IL-2), IL-6, IL-12 (p70), tumor necrosis factor (TNF), and IL-10, was observed in mice after S. suis type 2 infection. Taken together, these results suggest that S. suis infection can cause atrophy of the thymus and induce apoptosis of thymocytes in mice, thus likely suppressing host immunity.


Assuntos
Apoptose , Atrofia/patologia , Terapia de Imunossupressão , Doenças Linfáticas/etiologia , Infecções Estreptocócicas/complicações , Streptococcus suis/patogenicidade , Timo/patologia , Animais , Modelos Animais de Doenças , Células Epiteliais/patologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunomodulação , Doenças Linfáticas/patologia , Camundongos , Infecções Estreptocócicas/patologia , Timócitos/patologia
3.
J Zoo Wildl Med ; 51(3): 618-630, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33480537

RESUMO

A flock of budgerigars (Melopsittacus undulates) was purchased from a licensed breeder and quarantined at a zoologic facility within the United States in 2016. Following 82 deaths within the flock, the remaining 66 birds were depopulated because of ongoing clinical salmonellosis despite treatment. Gross necropsy was performed on all 66 birds. Histopathologic examination was performed on 10 birds identified with gross lesions and 10 birds without. Pathologic findings were most often observed in the liver, kidney, and spleen. Lesions noted in the livers and spleens were consistent with published reports of salmonellosis in psittacine species. Multisystemic changes associated with septicemia were not noted, most likely because of antibiotic intervention before euthanasia. Of the 20 budgerigars evaluated by histopathology, six had large basophilic intranuclear inclusion bodies within tubular epithelia in a portion of the kidneys. Electronic microscopy, next-generation sequencing, Sanger sequencing, and phylogenetic analyses were used to identify and categorize the identified virus as a novel siadenovirus strain BuAdV-1 USA-IA43444-2016. The strain was 99% similar to budgerigar adenovirus 1 (BuAdV-1), previously reported in Japan, and to a psittacine adenovirus 5 recently identified in a U.S. cockatiel. Salmonella typhimurium carriers were identified via polymerase chain reaction (PCR) and bacterial culture and compared with viral carriers identified via PCR. Inclusion bodies and Salmonella detection were significant in birds with gross lesions versus those without; however, there was no correlation between budgerigars positive with siadenovirus by PCR and concurrent Salmonella infection. Identifying subclinical siadenovirus strain BuAdV-1 USA-IA43444-2016 infection in this flock significantly differs from a previous report of clinical illness in five budgerigars resulting in death caused by BuAdV-1 in Japan. S. typhimurium remains a significant pathogen in budgerigars, and zoonotic concerns prompted depopulation to mitigate the public health risks of this flock.


Assuntos
Infecções por Adenoviridae/veterinária , Doenças das Aves/epidemiologia , Coinfecção/veterinária , Melopsittacus , Salmonelose Animal/epidemiologia , Siadenovirus/isolamento & purificação , Infecções por Adenoviridae/diagnóstico , Infecções por Adenoviridae/epidemiologia , Animais , Animais de Zoológico , Doenças das Aves/diagnóstico , Doenças das Aves/microbiologia , Doenças das Aves/virologia , Coinfecção/diagnóstico , Coinfecção/epidemiologia , Coinfecção/microbiologia , Salmonella typhimurium/fisiologia , Siadenovirus/classificação , Estados Unidos/epidemiologia
4.
Virus Res ; 263: 164-168, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30711577

RESUMO

A 15-year-old female cockatiel (Nymphicus hollandicus) undergoing long term management for hepatopathy died and underwent necropsy. Microscopic findings were consistent with chronic liver disease characterized by distorted hepatic architecture, fibrosis and biliary proliferation. The additional finding of large intranuclear inclusion bodies within hepatocytes and renal tubular epithelium prompted diagnostic next generation sequencing. The assembled sequences isolated from pooled kidney and liver were related to siadenoviruses. The genus Siadenovirus, within the family Adenoviridae, includes several species of viruses that pathogenically infect avian species including hemorrhagic enteritis virus of turkeys and marble spleen virus of pheasants. Siadenoviruses have previously been reported in seven psittacine species: a plum-headed parakeet (Psittacula cyanocephala), an umbrella cockatoo (Cacatua alba) budgerigars (Melopsittacus undulates), an eastern rosella (Platycercus eximius), a scarlet chested parrot (Neophema splendida), a cockatiel (Nymphicus hollandicus), and a red-crowned parakeet (Cyanoramphus novaezelandiae). This report describes a novel siadenovirus in a cockatiel that is highly identical to budgerigar adenovirus 1 and distinct from PsAdV-2 in cockatiels. We report the clinical pathologic, gross, and histopathologic findings in a cockatiel with chronic hepatitis and a novel siadenovirus, PsAdV-5. The sequencing data is presented with a phylogenetic analysis.


Assuntos
Infecções por Adenoviridae/veterinária , Doenças das Aves/virologia , Cacatuas , Hepatite Viral Animal/virologia , Siadenovirus/classificação , Siadenovirus/isolamento & purificação , Infecções por Adenoviridae/virologia , Animais , Doenças das Aves/patologia , Feminino , Hepatite Viral Animal/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Histocitoquímica , Túbulos Renais/patologia , Túbulos Renais/virologia , Fígado/patologia , Fígado/virologia , Filogenia , Homologia de Sequência , Siadenovirus/genética
5.
Vet Microbiol ; 223: 1-8, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30173733

RESUMO

Brucellosis, caused by Brucella spp., is one of the most serious zoonotic bacterial diseases. Small RNAs (sRNAs) are recognized as a key player in bacterial post-transcription regulation, since they participate in many biological processes with high efficiency and may govern the intracellular biochemistry and virulence of some pathogenic bacteria. Here, a novel small regulatory RNA, Bmsr1 (Brucella melitensis M28 small RNA 1), was identified in a virulent Brucella melitensis M28 strain based on bioinformatic analysis, reverse transcription PCR (RT-PCR), and Northern blot. The Bmsr1 expression level was highly induced after infection of macrophage cells RAW264.7 at 48 h, suggesting a role for Bmsr1 during in vitro infection. Indeed, bmsr1 deletion mutant of M28 attenuated its intracellular survival in RAW264.7 at 24 h and 48 h post-infection. In a mouse model of chronic infection, bmsr1 deletion strain displayed decreased colonization in the spleen while Bmsr1-overexpressed strain showed higher colonization levels than wild type pathogen. Isobaric tags for relative and absolute quantification (iTRAQ) revealed that 314 proteins were differentially expressed in M28Δbmsr1 compared with wild type. Functional annotation analysis demonstrated that most of those proteins are involved in biological processes and those proteins in the ribosome and nitrogen metabolism pathways were enriched. iTRAQ results combined with target prediction identified several potential target genes related to virulence, including virB2, virB9, virB10, virB11, and vjbR and many metabolism genes. Taken together, this study revealed the contribution of a novel sRNA Bmsr1 to virulence of B. melitensis M28, probably by influencing genes involved in T4SS, virulence regulator VjbR and other metabolism genes.


Assuntos
Brucella melitensis/genética , Brucelose/veterinária , Pequeno RNA não Traduzido/metabolismo , Animais , Brucella melitensis/patogenicidade , Brucelose/microbiologia , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Deleção de Sequência , Organismos Livres de Patógenos Específicos , Baço/microbiologia , Virulência , Zoonoses
6.
Infect Immun ; 82(12): 5086-98, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245807

RESUMO

Uropathogenic Escherichia coli (UPEC) is responsible for the majority of urinary tract infections (UTIs), which are some of the world's most common bacterial infections of humans. Here, we examined the role of FNR (fumarate and nitrate reduction), a well-known global regulator, in the pathogenesis of UPEC infections. We constructed an fnr deletion mutant of UPEC CFT073 and compared it to the wild type for changes in virulence, adherence, invasion, and expression of key virulence factors. Compared to the wild type, the fnr mutant was highly attenuated in the mouse model of human UTI and showed severe defects in adherence to and invasion of bladder and kidney epithelial cells. Our results showed that FNR regulates motility and multiple virulence factors, including expression of type I and P fimbriae, modulation of hemolysin expression, and expression of a novel pathogenicity island involved in α-ketoglutarate metabolism under anaerobic conditions. Our results demonstrate that FNR is a key global regulator of UPEC virulence and controls expression of important virulence factors that contribute to UPEC pathogenicity.


Assuntos
Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Ferro-Enxofre/metabolismo , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade , Fatores de Virulência/biossíntese , Animais , Aderência Bacteriana , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/genética , Feminino , Deleção de Genes , Proteínas Ferro-Enxofre/genética , Locomoção , Camundongos Endogâmicos CBA , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Escherichia coli Uropatogênica/fisiologia , Virulência
7.
PLoS One ; 8(4): e59242, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658605

RESUMO

We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.


Assuntos
Antibiose/genética , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Animais , Animais Selvagens , Aderência Bacteriana/genética , Farmacorresistência Bacteriana/genética , Escherichia coli Enteropatogênica/classificação , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Escherichia coli/classificação , Proteínas de Escherichia coli/classificação , Variação Genética , Ensaios de Triagem em Larga Escala , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Família Multigênica , Filogenia , Sus scrofa , Suínos , Virulência
8.
BMC Microbiol ; 12: 51, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22471764

RESUMO

BACKGROUND: Extraintestinal pathogenic Escherichia coli are important pathogens of human and animal hosts. Some human and avian extraintestinal pathogenic E. coli are indistinguishable on the basis of diseases caused, multilocus sequence and phylogenetic typing, carriage of large virulence plasmids and traits known to be associated with extraintestinal pathogenic E. coli virulence. RESULTS: The gene tkt1 identified by a previous signature-tagged transposon mutagenesis study, was found on a 16-kb genomic island of avian pathogenic Escherichia coli (APEC) O1, the first pathogenic Escherichia coli strain whose genome has been completely sequenced. tkt1 was present in 39.6% (38/96) of pathogenic Escherichia coli strains, while only 6.25% (3/48) of E. coli from the feces of apparently healthy chickens was positive. Further, tkt1 was predominantly present in extraintestinal pathogenic E. coli belonging to the B2 phylogenetic group, as compared to extraintestinal pathogenic E. coli of other phylogenetic groups. The tkt1-containing genomic island is inserted between the metE and ysgA genes of the E. coli K12 genome. Among different extraintestinal pathogenic E. coli of the B2 phylogenetic group, 61.7% of pathogenic Escherichia coli, 80.6% of human uropathogenic E.coli and 94.1% of human neonatal meningitis-causing E. coli, respectively, harbor a complete copy of this island; whereas, only a few avian fecal E. coli strains contained the complete island. Functional analysis showed that Tkt1 confers very little transketolase activity but is involved in peptide nitrogen metabolism. CONCLUSION: These results suggest tkt1 and its corresponding genomic island are frequently associated with avian and human ExPEC and are involved in bipeptide metabolism.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Ilhas Genômicas , Transcetolase/genética , Animais , Técnicas de Tipagem Bacteriana , Galinhas/microbiologia , DNA Bacteriano/genética , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Humanos , Tipagem de Sequências Multilocus , Peptídeos/metabolismo , Filogenia , Plasmídeos , Análise de Sequência de DNA
9.
Infect Immun ; 78(5): 1931-42, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20160015

RESUMO

ColV plasmids of extraintestinal pathogenic Escherichia coli (ExPEC) encode a variety of fitness and virulence factors and have long been associated with septicemia and avian colibacillosis. These plasmids are found significantly more often in ExPEC, including ExPEC associated with human neonatal meningitis and avian colibacillosis, than in commensal E. coli. Here we describe pAPEC-O103-ColBM, a hybrid RepFIIA/FIB plasmid harboring components of the ColV pathogenicity island and a multidrug resistance (MDR)-encoding island. This plasmid is mobilizable and confers the ability to cause septicemia in chickens, the ability to cause bacteremia resulting in meningitis in the rat model of human disease, and the ability to resist the killing effects of multiple antimicrobial agents and human serum. The results of a sequence analysis of this and other ColV plasmids supported previous findings which indicated that these plasmid types arose from a RepFIIA/FIB plasmid backbone on multiple occasions. Comparisons of pAPEC-O103-ColBM with other sequenced ColV and ColBM plasmids indicated that there is a core repertoire of virulence genes that might contribute to the ability of some ExPEC strains to cause high-level bacteremia and meningitis in a rat model. Examination of a neonatal meningitis E. coli (NMEC) population revealed that approximately 58% of the isolates examined harbored ColV-type plasmids and that 26% of these plasmids had genetic contents similar to that of pAPEC-O103-ColBM. The linkage of the ability to confer MDR and the ability contribute to multiple forms of human and animal disease on a single plasmid presents further challenges for preventing and treating ExPEC infections.


Assuntos
DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/microbiologia , Escherichia coli/patogenicidade , Plasmídeos , Fatores de Virulência/genética , Zoonoses/microbiologia , Animais , Células Cultivadas , Galinhas , DNA Bacteriano/química , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Feminino , Ilhas Genômicas , Humanos , Recém-Nascido , Masculino , Dados de Sequência Molecular , Ratos , Análise de Sequência de DNA , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA