RESUMO
In the ongoing quest for cost-effective and durable electrocatalysts for hydrogen production-a critical element of sustainable energy transformation-the 1T phase of Molybdenum Disulfide (MoS2) faces challenges due to its thermodynamic instability and the trade-off between efficiency and durability. Conversely, the 2H phase of MoS2, often disregarded in favor of the metallic 1T phase, suffers from its inert nature and limited active sites. To overcome these limitations, this study employs a straightforward hydrothermal synthesis strategy that couples both 1T and 2H phases of MoS2 with Ni3S2, forming 1T- and 2H- MoS2/Ni3S2 heterojunctions. Enhanced by Ni3S2's abundant active sites, improved electron transport capabilities, synergistic interface effects, and better structural stability, these heterojunctions achieve a high current density exceeding 500 mA cm-2 at low overpotentials, along with prolonged durability for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline electrolytes. Remarkably, an electrolyzer assembly utilizing 1T-MoS2/Ni3S2 as the cathode and 2H-MoS2/Ni3S2 as the anode demonstrates a competitive voltage of 1.58 V at 20 mA cm-2, showcasing superior performance in overall water splitting compared to other non-noble metal-based electrocatalysts. This study not only offers a viable method for synthesizing efficient and stable electrocatalysts for water splitting using transition metal-based heterogeneous structures but also addresses the fundamental challenges associated with 1T and 2H phases of MoS2.
RESUMO
Resistance to gemcitabine in pancreatic ductal adenocarcinoma (PDAC) leads to ineffective chemotherapy and, consequently, delayed treatment, thereby contributing to poor prognosis. Glycolysis is an important intrinsic reason for gemcitabine resistance as it competitively inhibits gemcitabine activity by promoting deoxycytidine triphosphate accumulation in PDAC. However, biomarkers are lacking to determine which patients can benefit significantly from glycolysis inhibition under the treatment of gemcitabine activity, and a comprehensive understanding of the molecular mechanisms that promote glycolysis in PDAC will contribute to the development of a strategy to sensitize gemcitabine chemotherapy. In this study, we aimed to identify a biomarker that can robustly indicate the intrinsic resistance of PDAC to gemcitabine and guide chemotherapy sensitization strategies. After establishing gemcitabine-resistant cell lines in our laboratory and collecting pancreatic cancer and adjacent normal tissues from gemcitabine-treated patients, we observed that circRNA hsa_circ_0008383 (namely cNEK6) was highly expressed in the peripheral blood and tumor tissues of patients and xenografts with gemcitabine-resistant PDAC. cNEK6 enhanced resistance to gemcitabine by promoting glycolysis in PDAC. Specifically, cNEK6 prevented K48 ubiquitination of small ribonucleoprotein peptide A from the BTRC, a ubiquitin E3 ligase; thus, the accumulated SNRPA stopped PP2Ac translation by binding to its G-quadruplexes in 5' UTR of mRNA. mTORC1 pathway was aberrantly phosphorylated and activated owing to the absence of PP2Ac. The expression level of cNEK6 in the peripheral blood and tumor tissues correlated significantly and positively with the activation of the mTORC1 pathway and degree of glycolysis. Hence, the therapeutic effect of gemcitabine is limited in patients with high cNEK6 levels, and in combination with the mTORC1 inhibitor, rapamycin, can enhance sensitivity to gemcitabine chemotherapy.
Assuntos
Carcinoma Ductal Pancreático , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Glicólise , Alvo Mecanístico do Complexo 1 de Rapamicina , Neoplasias Pancreáticas , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Glicólise/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Feminino , Pirofosfatases/metabolismo , Pirofosfatases/genética , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacosRESUMO
OBJECTIVES: To observe the effect of electroacupuncture (EA) preconditioning at "Quchi" (LI11) and "Xuehai" (SP10) in prevention of urticaria. METHODS: Twenty-four male SD rats were randomly divided into control, model and preconditioning of EA (Pre-EA) groups (8 rats/group). The urticaria model was established by intradermal injection of dilute allogeneic antioalbumin serum at the spots of the bilateral symmetry of the spine on the back, and followed by tail venous injection of mixture solution of egg albumin diluent, plus 0.5% Evans blue and normal saline. Ten days before the end of modeling, rats of the pre-EA group received EA stimulation of LI11 and SP10 for 20 min, once a day for 10 consecutive days. The times of rat's scratching the sensitized skin were recorded. HE staining method was used to observe the pathological changes of skin tissue, and toluidine blue staining method was used to observe the morphology of mast cells (MCs) in the skin, blood, mesentery, and peritoneal fluid, and calculate the degranulation rate. Immunohistochemical stainning was used to detect immunoglobulin E (IgE), histamine (HIS), and 5-hydroxytryptamine (5-HT) expressions in subcutaneous tissue. NOD like receptor thermal domain associated protein 3 (NLRP3) inflammasome, apoptosis related granule protein (ASC), and cysteine aspartate aminotransferase 1 (Caspase-1) protein expression levels in skin tissue were detected by Western blot. The contents of serum interleukin(IL)-1ß and IL-18 were detected using ELISA method. RESULTS: Compared with the control group, the scratching times, amount of Evans blue exudation of the sensitized blue spots, degranulation rate of MCs in skin, blood, mesentery and peritoneal fluid, the expression levels of IgE, HIS, 5-HT in subcutaneous tissue, protein expression levels of NLRP3, ASC, Caspase-1 in skin tissue, and the contents of serum IL-1ß and IL-18 were significantly increased (P<0.01, P<0.05) in the model group. In comparison with the model group, the scratching times, amount of Evans blue exudation of the sensitized blue spots, degranulation rate of MCs, the expression levels of IgE, HIS, 5-HT in subcutaneous tissue, protein expression levels of NLRP3, ASC, Caspase-1 in skin tissue, and the contents of serum IL-1ß and IL-18 in EA group were significantly decreased (P<0.01, P<0.05). CONCLUSIONS: EA preconditioning at LI11 and SP10 can prevent and treat UR by inhibiting inflammatory response, which is related to the regulation of pyroptosis.
Assuntos
Pontos de Acupuntura , Eletroacupuntura , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Urticária , Animais , Masculino , Ratos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Humanos , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Urticária/terapia , Urticária/metabolismo , Imunoglobulina E/sangue , Mastócitos/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Caspase 1/metabolismo , Caspase 1/genética , Histamina/metabolismo , Inflamação/terapia , Inflamação/prevenção & controle , Inflamação/metabolismo , Inflamação/genéticaRESUMO
The traditional medicinal knowledge in the northwest of Yunnan Province, China have been poorly studied. Paris polyphylla var. yunnanensis (PPvY) is widely cultivated and used as indigenous traditional Chinese medicine (TCM) to treat cancer in northwest Yunnan. This study aims to reveal the traditional medicinal knowledge of PPvY and folk formulas related to PPvY through literature research and ethnobotanical investigation. Semi-structured interviews were conducted with 14 highly regarded folk doctors in the northwest of Yunnan, China, based on relevant data collected in the initial phase of the research. We identified twenty-three traditional treatments, thirty pairing herbs used with PPvY in therapy, and eight processing methods of PPvY. The results indicated that PPvY and its associated formulas containing PPvY were primarily used for treating cancer and inflammation and for clearing heat and detoxifying. The TCM herbs most frequently used alongside PPvY included Engleromyces sinensis and Glycyrrhiza yunnanensis. The commonly employed processing methods primarily involved using PPvY in both its dry and fresh forms, while special processing methods, such as processing in wine and honey, steaming, and foil-packet boiling, were worth further research. Our results highlight the diversity of medicinal plants and the richness of traditional medical knowledge in northwest Yunnan, China. This study may offer clues for the development and research of indigenous medicinal plants. Additionally, a collective effort is needed to create a plan for the sustainable use of indigenous medicinal plants, enhancing local economic development while safeguarding biodiversity and traditional medicinal knowledge.
RESUMO
Gliomas are aggressive brain tumors associated with poor prognosis and limited treatment options due to their invasive nature and resistance to current therapeutic modalities. Research suggests that exosomal microRNAs have emerged as key players in intercellular communication within the tumor microenvironment, influencing tumor progression and therapeutic responses. Exosomal microRNAs (miRNAs), small non-coding RNAs, are crucial in glioma development, invasion, metastasis, angiogenesis, and immune evasion by binding to target genes. This comprehensive review examines the clinical relevance and implications of exosomal miRNAs in gliomas, highlighting their potential as diagnostic biomarkers, therapeutic targets and prognosis biomarker. Additionally, we also discuss the limitations of current exsomal miRNA treatments and address challenges and propose future directions for leveraging exosomal miRNAs in precision oncology for glioma management.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Gout is a crystal-related arthropathy caused by monosodium urate (MSU) deposition, resulting from purine metabolism disorders and hyperuricemia (HUA). Gout belongs to the traditional medicine category of Bi syndrome. Biqi capsules (BQ) is a traditional Chinese medicine formula used to treat Bi syndrome. The BQ prescription is derived from the ancient prescription of Hua Tuo, a famous physician in the Han Dynasty. AIM OF THE STUDY: To study the effect and mechanism of BQ in treating acute gouty arthritis (AGA) and HUA. MATERIALS AND METHODS: Analyzing BQ's signaling pathways for gout treatment via network pharmacology. The HUA model was induced orally with adenine and potassium oxonate. The rat AGA model was established by MSU injection. In vitro, MH7A and RAW 246.7 cells were treated with LPS and MSU. Serum uric acid, creatinine, and urea nitrogen levels were evaluated. Kidney and ankle joint pathology was observed via HE staining. Inflammatory signaling pathway proteins, epithelial-mesenchymal transition (EMT) pathway proteins, and uric acid metabolism-related proteins were detected by Western blot. RESULTS: 1780 potential targets for gout treatment were identified, and 1039 target proteins corresponding to BQ's active ingredients were obtained. Pathway enrichment analysis revealed BQ improved gout mainly through inflammatory pathways. Experimental results showed BQ could reduce serum uric acid level and increase uric acid clearance rate by regulating the expression of adenosine deaminase (ADA), and organic anion transporter 1 (OAT1) and glucose transporter 9 (GLUT9) in HUA mice. BQ could improve renal function and injury by inhibiting the NLRP3 pathway in HUA mice' kidneys. Additionally, BQ could alleviate ankle joint swelling and synovial injury, inhibit the TLR4/NLRP3 pathway, and reduce levels of inflammatory factors including interleukin 6 (IL-6), interleukin 1ß (IL-1ß), and tumor necrosis factor-alpha (TNF-α) in AGA rats. The main component of BQ, brucine, could inhibit the activation of NLRP3/NF-κB pathway induced by MSU and reduce the expression level of inflammatory factors (IL-6, IL-1ß, and TNF-α) in macrophages. Brucine could inhibit the activation of the EMT pathway and reduce the expression level of inflammatory factors (IL-6, TNF-α) in human fibroblast-like synoviocytes (MH7A cells) induced by MSU. CONCLUSIONS: BQ effectively reduced serum uric acid levels, improved kidney and joint damage, and ameliorated the inflammatory response caused by MSU. Its main component, brucine, effectively improved the inflammatory response and reduced the invasive ability of synoviocytes induced by MSU.
RESUMO
The Nab-paclitaxel combined with gemcitabine (AG) regimen is the main chemotherapy regimen for pancreatic cancer, but drug resistance often occurs. Currently, the ability to promote sensitization in drug-resistant cases is an important clinical issue, and the strategy of repurposing conventional drugs is a promising strategy. This study aimed to identify a classic drug that targets chemotherapy resistance's core signaling pathways and combine it with the AG regimen to enhance chemosensitivity. We also aimed to find reliable predictive biomarkers of drug combination sensitivity. Using RNA sequencing, we found that abnormal PI3K/Akt pathway activation plays a central role in mediating resistance to the AG regimen. Subsequently, through internal and external verification of randomly selected AG-resistant patient-derived organoid (PDO) and PDO xenograft models, we discovered for the first time that the classic anti-inflammatory drug sulindac K-80003, an inhibitor of the PI3K/Akt pathway that we focused on, promoted sensitization in half (14/28) of AG-resistant pancreatic ductal adenocarcinoma cases. Through RNA-sequencing, multiplex immunofluorescent staining, and immunohistochemistry experiments, we identified cFAM124A as a novel biomarker through which sulindac K-80003 promotes AG sensitization. Its role as a sensitization marker is explained via the following mechanism: cFAM124A enhances both the mRNA expression of cathepsin L and the activity of the cathepsin L enzyme. This dual effect stimulates the cleavage of RXRα, leading to large amounts of truncated RXRα, which serves as a direct target of K-80003. Consequently, this process results in the pathological activation of the PI3K/Akt pathway. In summary, our study provides a new treatment strategy and novel biological target for patients with drug-resistant pancreatic cancer.
Assuntos
Albuminas , Protocolos de Quimioterapia Combinada Antineoplásica , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Paclitaxel , Neoplasias Pancreáticas , Sulindaco , Ensaios Antitumorais Modelo de Xenoenxerto , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Camundongos , Albuminas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sulindaco/farmacologia , Sulindaco/análogos & derivados , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Masculino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacosRESUMO
BACKGROUND. Tumor growth processes result in spatial heterogeneity, with the development of tumor subregions (i.e., habitats) having unique biologic characteristics. OBJECTIVE. The purpose of our study was to develop and validate a habitat model combining tumor and peritumoral radiomic features on chest CT for predicting invasiveness of lung adenocarcinoma. METHODS. This retrospective study included 1156 patients (mean age, 57.5 years; 464 men, 692 women), from three centers and a public dataset, who underwent chest CT before lung adenocarcinoma resection (variable date ranges across datasets). Patients from one center formed training (n = 500) and validation (n = 215) sets; patients from the other sources formed three external test sets (n = 249, 113, 79). For each patient, a single nodule was manually segmented on chest CT. The nodule segmentation was combined with an automatically generated 4-mm peritumoral region into a whole-volume volume of interest (VOI). A gaussian mixture model (GMM) identified voxel clusters with similar first-order energy across patients. GMM results were used to divide each patient's whole-volume VOI into multiple habitats, which were defined consistently across patients. Radiomic features were extracted from each habitat. After feature selection, a habitat model was developed for predicting invasiveness, with the use of pathologic assessment as a reference. An integrated model was constructed, combining features extracted from habitats and whole-volume VOIs. Model performance was evaluated, including in subgroups based on nodule density (pure ground-glass, part-solid, and solid). The code for habitat imaging and model construction is publicly available (https://github.com/Shangyoulan/Habitat/). RESULTS. Invasive cancer was diagnosed in 626 of 1156 patients. GMM identified four as the optimal number of voxel clusters and thus of per-patient tumor habitats. The habitat model had an AUC of 0.932 in the validation set and 0.881, 0.880, and 0.764 in the three external test sets. The integrated model had an AUC of 0.947 in the validation set and 0.936, 0.908, and 0.800 in the three external test sets. In the three external test sets combined, across nodule densities, AUCs for the habitat model were 0.836-0.869 and for the integrated model were 0.846-0.917. CONCLUSION. Habitat imaging combining tumoral and peritumoral radiomic features could help predict lung adenocarcinoma invasiveness. Prediction is improved when combining information on tumor subregions and the tumor overall. CLINICAL IMPACT. The findings may aid personalized preoperative assessments to guide clinical decision-making in lung adenocarcinoma.
RESUMO
Osteolytic diseases such as osteoporosis and neoplastic bone metastases are caused by the excessive activation of osteoclasts. Inhibiting the excessive activation of osteoclasts is a crucial strategy for treating osteolytic diseases. This study investigated the roles and mechanisms of regorafenib, a tyrosine kinase inhibitor, on osteoclasts and osteolytic diseases. We first identified the potential targets and mechanisms of regorafenib on osteoclast-related osteolytic diseases using network pharmacological analysis and molecular docking techniques. Then, we verified its role and mechanism on osteoclasts via cellular and animal experiments. Network pharmacology analysis identified 89 common targets shared by regorafenib and osteoclast-related osteolytic diseases. Enrichment analysis suggested that regorafenib may act on osteoclast-related osteolytic diseases by modulating targets such as AKT1, CASP3, MMP9, and MAPK3, regulating biological processes such as cell proliferation, apoptosis, and phosphorylation regulation, and influencing signaling pathways such as MAPK, PI3K/AKT, and osteoclast differentiation. The molecular docking results indicated that regorafenib and AKT1, CASP3, MMP9, MAPK3, and MAPK14 were stably docked. Cell experiments demonstrated that regorafenib significantly inhibited osteoclast differentiation and bone resorption in RAW 264.7 cells and bone marrow macrophages in a dose-dependent manner, with up to 50% reduction at 800 nM concentration without exhibiting cytotoxic effects. Furthermore, Western blot and RT-qPCR results demonstrated that regorafenib inhibited osteoclast differentiation by blocking the transduction of RANKL-induced NF-κB, p38, ERK, and NFAT signaling pathways. In vivo studies using an ovariectomized mouse model showed that regorafenib significantly improved bone volume fraction (BV/TV), bone surface to total volume (BS/TV), and number of trabeculae (TB.N), as well as reduced trabecular separation (Tb.Sp) compared to the OVX groups (P < 0.05). TRAcP staining results revealed a reduction in the number of osteoclasts with regorafenib treatment (P < 0.01). These results indicate that regorafenib exerts its protective effects against osteoclast-related osteolytic disease by inhibiting the RANKL-induced NF-κB, NFAT, ERK, and p38 signaling pathways. This study proves that regorafenib may serve as a potential therapeutic agent for osteoclast-related osteolytic diseases.
RESUMO
Clear cell renal cell carcinoma (ccRCC) is a prevalent malignancy with complex heterogeneity within epithelial cells, which plays a crucial role in tumor progression and immune regulation. Yet, the clinical importance of the malignant epithelial cell-related genes (MECRGs) in ccRCC remains insufficiently understood. This research aims to undertake a comprehensive investigation into the functions and clinical relevance of malignant epithelial cell-related genes in ccRCC, providing valuable understanding of the molecular mechanisms and offering potential targets for treatment strategies. Using data from single-cell sequencing, we successfully identified 219 MECRGs and established a prognostic model MECRGS (MECRGs' signature) by synergistically analyzing 101 machine-learning models using 10 different algorithms. Remarkably, the MECRGS demonstrated superior predictive performance compared to traditional clinical features and 92 previously published signatures across six cohorts, showcasing its independence and accuracy. Upon stratifying patients into high- and low-MECRGS subgroups using the specified cut-off threshold, we noted that patients with elevated MECRGS scores displayed characteristics of an immune suppressive tumor microenvironment (TME) and showed worse outcomes after immunotherapy. Additionally, we discovered a distinct ccRCC tumor cell subtype characterized by the high expressions of PLOD2 (procollagen-lysine,2-oxoglutarate 5-dioxygenase 2) and SAA1 (Serum Amyloid A1), which we further validated in the Renji tissue microarray (TMA) cohort. Lastly, 'Cellchat' revealed potential crosstalk patterns between these cells and other cell types, indicating their potential role in recruiting CD163 + macrophages and regulatory T cells (Tregs), thereby establishing an immunosuppressive TME. PLOD2 + SAA1 + cancer cells with intricate crosstalk patterns indeed show promise for potential therapeutic interventions.
Assuntos
Carcinoma de Células Renais , Células Epiteliais , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Microambiente Tumoral , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Microambiente Tumoral/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Prognóstico , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Masculino , Perfilação da Expressão Gênica , Aprendizado de MáquinaRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with dismal prognosis due to distant metastasis, even in the early stage. Using RNA sequencing and multiplex immunofluorescence, here we find elevated expression of mixed lineage kinase domain-like pseudo-kinase (MLKL) and enhanced necroptosis pathway in PDAC from early liver metastasis T-stage (T1M1) patients comparing with non-metastatic (T1M0) patients. Mechanistically, MLKL-driven necroptosis recruits macrophages, enhances the tumor CD47 'don't eat me' signal, and induces macrophage extracellular traps (MET) formation for CXCL8 activation. CXCL8 further initiates epithelial-mesenchymal transition (EMT) and upregulates ICAM-1 expression to promote endothelial adhesion. METs also degrades extracellular matrix, that eventually supports PDAC liver metastasis. Meanwhile, targeting necroptosis and CD47 reduces liver metastasis in vivo. Our study thus reveals that necroptosis facilitates PDAC metastasis by evading immune surveillance, and also suggest that CD47 blockade, combined with MLKL inhibitor GW806742X, may be a promising neoadjuvant immunotherapy for overcoming the T1M1 dilemma and reviving the opportunity for radical surgery.
Assuntos
Antígeno CD47 , Carcinoma Ductal Pancreático , Transição Epitelial-Mesenquimal , Armadilhas Extracelulares , Neoplasias Hepáticas , Macrófagos , Necroptose , Neoplasias Pancreáticas , Proteínas Quinases , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/metabolismo , Animais , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/genética , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Linhagem Celular Tumoral , Antígeno CD47/metabolismo , Antígeno CD47/genética , Proteínas Quinases/metabolismo , Armadilhas Extracelulares/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Masculino , Transdução de Sinais , Feminino , Acrilamidas , SulfonamidasRESUMO
This research aimed to clarify the effects of exogenously applied chitosan on the physiological characteristics, antioxidant activities, and Cd accumulation of wheat (Triticum aestivum L.) seedlings under cadmium (Cd) stress and to identify the key indicators based on the partial least squares model. The wheat variety studied was Bainong207 (BN207), and Cd-stress was achieved by growing seedlings in a hydroponic culture experiment with 10 and 25 µmol·L-1 Cd2+ added to the culture solution. It was found that both Cd-stress at 10 and 25 µmol·L-1 significantly inhibited the chlorophyll content, photosynthesis, and biomass accumulation of wheat seedlings. Seedling roots became shorter and thicker, and the lateral roots decreased under Cd-stress. The Cd-stress also increased H2O2 and MDA accumulation and the degree of cell membrane lipid peroxidation and affected the activities of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD). Under Cd stress, exogenous chitosan decreased the Cd content in the aboveground and underground parts of wheat by 13.22 %-21.63 % and 7.92 %-28.32 % and reduced Cd accumulation in the aboveground and underground parts by 5.37 %-6.71 % and 1.91 %-4.09 %, respectively. Whereas exogenous chitosan application significantly reduced the content of H2O2 in roots and aboveground parts of wheat by 38.21 %-47.46 % and 45.81 %-55.73 % and MDA content by 37.65 %-48.12 % and 29.87 %-32.51 %, it increased the activities of SOD and POD in roots by 2.78 %-5.61 % and 13.81 %-18.33 %, respectively. In summary, exogenous chitosan can improve the photosynthetic characteristics and antioxidant enzyme activities of wheat seedlings under Cd stress, reduce the content and accumulation of Cd in the root and aboveground parts of wheat, and alleviate the damage of lipid peroxidation to the cell membrane. All of these results provide the basal data for the application of exogenous chitosan to alleviate Cd toxicity to wheat seedlings.
Assuntos
Antioxidantes , Cádmio , Quitosana , Plântula , Triticum , Triticum/metabolismo , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Cádmio/toxicidade , Cádmio/metabolismo , Quitosana/metabolismo , Quitosana/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Antioxidantes/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismoRESUMO
Lenvatinib (LVN) is a potentially effective multiple-targeted receptor tyrosine kinase inhibitor approved for treating hepatocellular carcinoma, metastatic renal cell carcinoma and thyroid cancer. Nonetheless, poor pharmacokinetic properties including poor water solubility and rapid metabolic, complex tumor microenvironment, and drug resistance have impeded its satisfactory therapeutic efficacy. This article comprehensively reviews the uses of nanotechnology in LVN to improve antitumor effects. With the characteristic of high modifiability and loading capacity of the nano-drug delivery system, an active targeting approach, controllable drug release, and biomimetic strategies have been devised to deliver LVN to target tumors in sequence, compensating for the lack of passive targeting. The existing applications and advances of LVN in improving therapeutic efficacy include improving longer-term efficiency, achieving higher efficiency, combination therapy, tracking and diagnosing application and reducing toxicity. Therefore, using multiple strategies combined with photothermal, photodynamic, and immunoregulatory therapies potentially overcomes multi-drug resistance, regulates unfavorable tumor microenvironment, and yields higher synergistic antitumor effects. In brief, the nano-LVN delivery system has brought light to the war against cancer while at the same time improving the antitumor effect. More intelligent and multifunctional nanoparticles should be investigated and further converted into clinical applications in the future.
Assuntos
Antineoplásicos , Sistemas de Liberação de Fármacos por Nanopartículas , Compostos de Fenilureia , Quinolinas , Humanos , Quinolinas/química , Quinolinas/farmacocinética , Quinolinas/administração & dosagem , Quinolinas/farmacologia , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacocinética , Compostos de Fenilureia/administração & dosagem , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Sistemas de Liberação de Fármacos por Nanopartículas/química , Animais , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Nanopartículas/químicaRESUMO
Thioredoxin reductase (TrxR) is a pivotal regulator of redox homeostasis. It is frequently overexpressed in various cancer cells, including prostate cancer, making it a promising target for the development of anti-cancer drugs. In this study, we screened a series of newly designed complexes of gold(I) phosphine. Specifically, Compound 5 exhibited the highest cytotoxicity against prostate cancer cells and demonstrated stronger antitumor effects than commonly used drugs, such as cisplatin and auranofin. Importantly, our mechanistic study revealed that Compound 5 effectively inhibits the TrxR system in vitro. Additionally, Compound 5 promoted intracellular accumulation of reactive oxygen species (ROS), leading to mitochondrial dysfunction and irreversible apoptosis in prostate cancer cells. Our in vivo xenograft study further demonstrated that Compound 5 has excellent antitumor activity against prostate cancer cells, but does not cause severe side effects. These findings provide a promising lead Compound for the development of novel antitumor agents targeting prostate cancer and offer a valuable tool for investigating biological pathways involving TrxR and ROS modulation.
RESUMO
INTRODUCTION: Brain insulin resistance and deficiency is a consistent feature of Alzheimer's disease (AD). Insulin resistance can be mediated by the surface expression of the insulin receptor (IR). Cleavage of the IR generates the soluble IR (sIR). METHODS: We measured the levels of sIR present in cerebrospinal fluid (CSF) from individuals along the AD diagnostic spectrum from two cohorts: Seattle (n = 58) and the Consortium for the Early Identification of Alzheimer's Disease-Quebec (CIMA-Q; n = 61). We further investigated the brain cellular contribution for sIR using human cell lines. RESULTS: CSF sIR levels were not statistically different in AD. CSF sIR and amyloid beta (Aß)42 and Aß40 levels significantly correlated as well as CSF sIR and cognition in the CIMA-Q cohort. Human neurons expressing the amyloid precursor protein "Swedish" mutation generated significantly greater sIR and human astrocytes were also able to release sIR in response to both an inflammatory and insulin stimulus. DISCUSSION: These data support further investigation into the generation and role of sIR in AD. Highlights: Cerebrospinal fluid (CSF) soluble insulin receptor (sIR) levels positively correlate with amyloid beta (Aß)42 and Aß40.CSF sIR levels negatively correlate with cognitive performance (Montreal Cognitive Assessment score).CSF sIR levels in humans remain similar across Alzheimer's disease diagnostic groups.Neurons derived from humans with the "Swedish" mutation in which Aß42 is increased generate increased levels of sIR.Human astrocytes can also produce sIR and generation is stimulated by tumor necrosis factor α and insulin.
RESUMO
Model-based meta-analysis (MBMA) can be used in assisting drug development and optimizing treatment in clinical practice, potentially reducing costs and accelerating drug approval. We aimed to assess the application and quality of MBMA studies. We searched multiple databases to identify MBMA in pharmaceutical research. Eligible MBMA should incorporate pharmacological concepts to construct mathematical models and quantitatively examine and/or predict drug effects. Relevant information was summarized to provide an overview of the application of MBMA. We used AMSTAR-2 and PRISMA 2020 checklists to evaluate the methodological and reporting quality of included MBMA, respectively. A total of 143 MBMA studies were identified. MBMA was increasingly used over time for one or more areas: drug discovery and translational research (n = 8, 5.6%), drug development decision making (n = 42, 29.4%), optimization of clinical trial design (n = 46, 32.2%), medication in special populations (n = 15, 10.5%), and rationality and safety of drug use (n = 71, 49.7%). The included MBMA covered 17 disease areas, with the top three being nervous system diseases (n = 19, 13.2%), endocrine/nutritional/metabolic diseases (n = 17, 11.8%), and neoplasms (n = 16, 11.1%). Of these MBMA studies, 138 (96.5%) were rated as very low quality. The average rate of compliance with PRISMA was only 51.4%. Our findings suggested that MBMA was mainly used to evaluate the efficacy and safety of drugs, with a focus on chronic diseases. The methodological and reporting quality of MBMA should be further improved. Given AMSTAR-2 and PRISMA checklists were not specifically designed for MBMA, adapted assessment checklists for MBMA should be warranted.
Assuntos
Metanálise como Assunto , Humanos , Estudos Transversais , Pesquisa Farmacêutica , Desenvolvimento de Medicamentos/métodos , Modelos Teóricos , Projetos de Pesquisa , Descoberta de Drogas/métodosRESUMO
BACKGROUND: Complex cellular signaling network in the tumor microenvironment (TME) could serve as an indicator for the prognostic classification of hepatocellular carcinoma (HCC) patients. METHODS: Univariate Cox regression analysis was performed to screen prognosis-related TME-related genes (TRGs), based on which HCC samples were clustered by running non-negative matrix factorization (NMF) algorithm. Furthermore, the correlation between different molecular HCC subtypes and immune cell infiltration level was analyzed. Finally, a risk score (RS) model was established by LASSO and Cox regression analyses (CRA) using these TRGs. Functional enrichment analysis was performed using gene set enrichment analysis (GSEA). RESULTS: HCC patients were divided into three molecular subtypes (C1, C2, and C3) based on 704 prognosis-related TRGs. HCC subtype C1 had significantly better OS than C2 and C3. We selected 13 TRGs to construct the RS model. Univariate and multivariate CRA showed that the RS could independently predict patients' prognosis. A nomogram integrating the RS and clinicopathologic features of the patients was further created. We also validated the reliability of the model according to the area under the receiver operating characteristic (ROC) curve value, concordance index (C-index), and decision curve analysis. The current findings demonstrated that the RS was significantly correlated with CD8+ T cells, monocytic lineage, and myeloid dendritic cells. CONCLUSION: This study provided TRGs to help classify patients with HCC and predict their prognoses, contributing to personalized treatments for patients with HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , Biomarcadores Tumorais/genética , Nomogramas , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-IdadeRESUMO
Induction of ferroptosis can inhibit cancer cells in vitro, however, the role of ferroptosis in treatment in vivo is controversial. The immunosuppressive cells activated by the ferroptotic tumor cells can promote the growth of residual tumor cells, hindering the application of ferroptosis stimulation in tumor treatment. In this study, a new strategy is aimed to be identified for effectively triggering immunogenic ferroptosis in pancreatic ductal adenocarcinoma (PDAC) and simultaneously stimulating antitumor immune responses. Toward this, several molecular and biochemical experiments are performed using patient-derived organoid models and a KPC mouse model (LSL-KrasG12D /+, LSL-Trp53R172H/+, Pdx-1-Cre). It is observed that the inhibition of macrophage-capping protein (MCP) suppressed the ubiquitin fold modifier (UFM)ylation of pirin (PIR), a newly identified substrate of UFM1, thereby decreasing the transcription of GPX4, a marker of ferroptosis, and promoting the cytoplasmic transportation of HMGB1, a damage-associated molecular pattern. GPX4 deficiency triggered ferroptosis, and the pre-accumulated cytosolic HMGB1 is released rapidly. This altered release pattern of HMGB1 facilitated the pro-inflammatory M1-like polarization of macrophages. Thus, therapeutic inhibition of MCP yielded dual antitumor effects by stimulating ferroptosis and activating antitumor pro-inflammatory M1-like macrophages. The nanosystem developed for specifically silencing MCP is a promising tool for treating PDAC.
Assuntos
Carcinoma Ductal Pancreático , Modelos Animais de Doenças , Ferroptose , Proteína HMGB1 , Neoplasias Pancreáticas , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Ferroptose/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismoRESUMO
To explore the effects of different concentrations of zinc ï¼Znï¼ on the growth and root architecture classification of maize seedlings under cadmium ï¼Cdï¼ stressï¼ a hydroponic experiment was conducted to study the effects of different concentrations of Zn ï¼0ï¼ 10ï¼ 25ï¼ 50ï¼ 100ï¼ 200ï¼ and 400 µmol·L-1ï¼ on the growthï¼ root architecture and classification characteristicsï¼ Cd contentï¼ root Cd uptake capacityï¼ and photosynthetic system of maize seedlings under Cd stress ï¼50 µmol·L-1ï¼ by using Zhengdan 958 as the experimental material. Principal component analysis and the membership function method were used for comprehensive evaluation. The results showed that the 50 µmol·L-1 Cd stress had a significant toxic effect on maize seedlingsï¼ which significantly reduced chlorophyll content and photosynthetic parameters. The main root lengthï¼ plant heightï¼ biomassï¼ root forksï¼ and root tipsï¼ including the root length and root surface area of the grade â -â ¢ diameter range and the root volume of the grade â -â ¡ diameter rangeï¼ decreased significantlyï¼ which hindered the normal growth and development of maize seedlings. Compared with that under no Zn applicationï¼ 100 µmol·L-1 and 200 µmol·L-1 Zn application reduced the uptake of Cd by maize seedlingsï¼ significantly reduced the Cd content in shoots and roots and the Cd uptake efficiency. The toxic effect on maize seedlings was alleviatedï¼ and the fresh weightï¼ dry weightï¼ tolerance indexï¼ and root forks of shoots and roots were significantly increased. The photosynthesis of maize seedlings was significantly enhancedï¼ and the photosynthetic rate and the total chlorophyll content was significantly increased. The RLï¼ SAï¼ and RV in the â -â ¡ diameter range reached the maximum at 100 µmol·L-1 Znï¼ and the RLï¼ SAï¼ and RV in the â ¢ diameter range reached the maximum at 200 µmol·L-1 Znï¼ which were significantly higher than those without Zn treatment. The comprehensive evaluation of the growth tolerance of maize seedlings showed that 100 µmol·L-1 and 200 µmol·L-1 Zn had better effects on alleviating Cd toxicity. Comprehensive analysis showed that the application of appropriate concentration of Zn could reduce the Cd content in maize seedlingsï¼ the Cd uptake capacityï¼ and Cd uptake efficiency of rootsï¼ increase the biomass accumulation of maize seedlingsï¼ reduce the effect of Cd toxicity on root architectureï¼ reduce the effect on the light and systemï¼ and improve the tolerance of maize seedlings to Cd.
Assuntos
Plântula , Poluentes do Solo , Zinco , Cádmio , Zea mays , Raízes de Plantas , ClorofilaRESUMO
Patients with concurrent intrahepatic cholangiocarcinoma (ICC) and hepatolithiasis generally have poor prognoses. Hepatolithiasis is once considered the primary cause of ICC, although recent insights indicate that bacteria in the occurrence of hepatolithiasis can promote the progression of ICC. By constructing in vitro and in vivo ICC models and patient-derived organoids (PDOs), it is shown that Escherichia coli induces the production of a novel RNA, circGLIS3 (cGLIS3), which promotes tumor growth. cGLIS3 binds to hnRNPA1 and G3BP1, resulting in the assembly of stress granules (SGs) and suppression of hnRNPA1 and G3BP1 ubiquitination. Consequently, the IKKα mRNA is blocked in SGs, decreasing the production of IKKα and activating the NF-κB pathway, which finally results in chemoresistance and produces metastatic phenotypes of ICC. This study shows that a combination of Icaritin (ICA) and gemcitabine plus cisplatin (GP) chemotherapy can be a promising treatment strategy for ICC.