Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(31): 40641-40652, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051862

RESUMO

Photothermal therapy (PTT) has emerged as a noninvasive and precise cancer treatment modality known for its high selectivity and lack of drug resistance. However, the clinical translation of many PTT agents is hindered by the limited biodegradability of inorganic nanoparticles and the instability of organic dyes. In this study, a peptide conjugate, IR820-Cys-Trp-Glu-Trp-Thr-Trp-Tyr (IR820-C), was designed to self-assemble into nanoparticles for both potent PTT and vascular disruption in melanoma treatment. When co-assembled with the poorly soluble vascular disrupting agent (VDA) combretastatin A4 (CA4), the resulting nanoparticles (IR820-C@CA4 NPs) accumulate efficiently in tumors, activate systemic antitumor immune responses, and effectively ablate melanoma with a single treatment and near-infrared irradiation, as confirmed by our in vivo experiments. Furthermore, by exploiting the resulting tumor hypoxia, we subsequently administered the hypoxia-activated prodrug tirapazamine (TPZ) to capitalize on the created microenvironment, thereby boosting therapeutic efficacy and antimetastatic potential. This study showcases the potential of short-peptide-based nanocarriers for the design and development of stable and efficient photothermal platforms. The multifaceted therapeutic strategy, which merges photothermal ablation with vascular disruption and hypoxia-activated chemotherapy, holds great promise for advancing the efficacy and scope of cancer treatment modalities.


Assuntos
Melanoma , Animais , Camundongos , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Linhagem Celular Tumoral , Humanos , Terapia Fototérmica , Nanopartículas/química , Peptídeos/química , Peptídeos/farmacologia , Estilbenos/química , Estilbenos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Tirapazamina/química , Tirapazamina/farmacologia , Verde de Indocianina/análogos & derivados
2.
Transl Oncol ; 48: 102065, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053343

RESUMO

Numerous recent studies have underscored the indispensable roles of long non-coding RNAs (lncRNAs) in various diseases. However, their precise mechanisms in urinary bladder cancer (UBC) remain to be further elucidated. To delve into this inquiry, online databases were analyzed to identify differentially expressed lncRNAs in UBC, followed by the functional experiments in vivo and in vitro functional experiments. GAS6-AS1 exhibited high expression levels in UBC tissues and was shown to regulate the proliferation, migration, invasion, and cell cycle progression of UBC cells in vitro and in vivo. Then, a series of molecular biology experiments, including RNA pull-down, dual-luciferase reporter gene assays, RNA immunoprecipitation (RIP) assays, fluorescent in situ hybridization (FISH), and the triplex-capture assay demonstrated its interaction with miR-367-3p and PRC1. Mechanistically, GAS6-AS1 was found to enhance MMP7 expression by sequestering miR-367-3p. Moreover, GAS6-AS1 inhibited APC transcription by binding with PRC1, thereby activating several oncogenes downstream of the WNT pathway. To sum up, GAS6-AS1 promotes UBC progression through two distinct axes: the GAS6-AS1/miR-367-3p/MMP7 axis and the GAS6-AS1/PRC1/APC/Wnt/MMP7 axis, respectively. As a potential biomarker for UBC, GAS6-AS1 holds promising prospects for the diagnosis, treatment, and prognosis of UBC.

3.
Angew Chem Int Ed Engl ; 63(28): e202404703, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38655625

RESUMO

Self-assembly in living cells represents one versatile strategy for drug delivery; however, it suffers from the limited precision and efficiency. Inspired by viral traits, we here report a cascade targeting-hydrolysis-transformation (THT) assembly of glycosylated peptides in living cells holistically resembling viral infection for efficient cargo delivery and combined tumor therapy. We design a glycosylated peptide via incorporating a ß-galactose-serine residue into bola-amphiphilic sequences. Co-assembling of the glycosylated peptide with two counterparts containing irinotecan (IRI) or ligand TSFAEYWNLLSP (PMI) results in formation of the glycosylated co-assemblies SgVEIP, which target cancer cells via ß-galactose-galectin-1 association and undergo galactosidase-induced morphological transformation. While GSH-reduction causes release of IRI from the co-assemblies, the PMI moieties release p53 and facilitate cell death via binding with protein MDM2. Cellular experiments show membrane targeting, endo-/lysosome-mediated internalization and in situ formation of nanofibers in cytoplasm by SgVEIP. This cascade THT process enables efficient delivery of IRI and PMI into cancer cells secreting Gal-1 and overexpressing ß-galactosidase. In vivo studies illustrate enhanced tumor accumulation and retention of the glycosylated co-assemblies, thereby suppressing tumor growth. Our findings demonstrate an in situ assembly strategy mimicking viral infection, thus providing a new route for drug delivery and cancer therapy in the future.


Assuntos
Sistemas de Liberação de Medicamentos , Glicopeptídeos , Humanos , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Animais , Viroses/tratamento farmacológico , Viroses/metabolismo , Irinotecano/química , Irinotecano/farmacologia , Camundongos , Linhagem Celular Tumoral
4.
Angew Chem Int Ed Engl ; 62(49): e202314578, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37870078

RESUMO

The presence of disordered region or large interacting surface within proteins significantly challenges the development of targeted drugs, commonly known as the "undruggable" issue. Here, we report a heterogeneous peptide-protein assembling strategy to selectively phosphorylate proteins, thereby activating the necroptotic signaling pathway and promoting cell necroptosis. Inspired by the structures of natural necrosomes formed by receptor interacting protein kinases (RIPK) 1 and 3, the kinase-biomimetic peptides are rationally designed by incorporating natural or D -amino acids, or connecting D -amino acids in a retro-inverso (DRI) manner, leading to one RIPK3-biomimetic peptide PR3 and three RIPK1-biomimetic peptides. Individual peptides undergo self-assembly into nanofibrils, whereas mixing RIPK1-biomimetic peptides with PR3 accelerates and enhances assembly of PR3. In particular, RIPK1-biomimetic peptide DRI-PR1 exhibits reliable binding affinity with protein RIPK3, resulting in specific cytotoxicity to colon cancer cells that overexpress RIPK3. Mechanistic studies reveal the increased phosphorylation of RIPK3 induced by RIPK1-biomimetic peptides, elucidating the activation of the necroptotic signaling pathway responsible for cell death without an obvious increase in secretion of inflammatory cytokines. Our findings highlight the potential of peptide-protein hybrid aggregation as a promising approach to address the "undruggable" issue and provide alternative strategies for overcoming cancer resistance in the future.


Assuntos
Apoptose , Peptídeos , Apoptose/fisiologia , Morte Celular , Fosforilação , Peptídeos/farmacologia , Aminoácidos
5.
Anal Chem ; 94(9): 3774-3781, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35189681

RESUMO

Many metabolites, including amino acids, neurotransmitters, and pharmaceuticals, contain primary amine functional groups. The analysis of these molecules by mass spectrometry (MS) plays an important role in the study of cancers and psychogenic diseases. However, the MS-based detection and visualization of these bioactive metabolites directly from real biological systems still suffer from challenges such as low ionization efficiency and/or matrix interference effects. Here, we introduce a simple and efficient strategy, the nanosecond photochemical reaction (nsPCR)-enabled fast chemical derivatization, enabling direct MS analysis of primary amine-containing metabolites, with enhanced detection sensitivity for numerous metabolites from cell culture medium and rat brain sections. Furthermore, this nsPCR-based chemical derivatization strategy was demonstrated to be a useful visualizing tool that could provide improved spatial information for these metabolites, potentially offering alternative tools for gaining novel insights into metabolic events.


Assuntos
Aminas , Aminoácidos , Aminas/química , Aminoácidos/análise , Animais , Indicadores e Reagentes , Neurotransmissores , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4238-4243, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34467738

RESUMO

Wuwei Ganlu, a formula for medicated bath, consists of medicinal materials of Ephedra sinica, Platycladus orientalis, Myricaria squamosa, Artemisia carvifolia, and Rhododendron anthopogonoides, which is effective in inducing perspiration, resisting inflammation, relieving pain, regulating yellow water disease, and activating blood circulation. On this basis, a variety of formulas for Tibetan medicated bath have been derived for the treatment of diseases in internal organs, joints, nerves, etc. Modern studies have confirmed that Wuwei Ganlu has a good therapeutic efficacy on knee osteoarthritis(KOA). The present study explored the mechanism of Wuwei Ganlu in treating KOA based on network pharmacology and molecular docking. Firstly, the chemical components of Wuwei Ganlu were obtained through literature mining and database retrieval, and corresponding potential targets were predicted according to the BATMAN-TCM database. The protein-protein interaction(PPI) network was obtained after the potential targets were input into the STRING database. The network function modules were analyzed by the Molecular Complex Detection(MCODE) algorithm, and the functions of the modules were annotated to analyze the action mode of Wuwei Ganlu. Secondly, the related targets of KOA were collected through the DisGeNET database, and the overlapping targets were confirmed to analyze the mechanism of Wuwei Ganlu in treating KOA. Finally, the key targets were selected for molecular docking with the main components of Wuwei Ganlu to verify the component-target interaction. A total of 550 chemical components and 1 365 potential targets of Wuwei Ganlu were obtained. PPI analysis indicated that this formula could exert the effects of oxidation-reduction, inflammation resistance, bone absorption, bone mineralization, etc. Nineteen common targets were obtained from the intersection of potential targets of Wuwei Ganlu and KOA disease targets. It was found that the Wuwei Ganlu mainly acts on nuclear factor-κB(NF-κB), interleukin-1 beta(IL1ß), tumor necrosis factor(TNF), IL6, IL1 receptor antagonist(IL1 RN), and prostaglandin-endoperoxide synthase-2(PTGS2) to treat KOA. Among the 550 chemical components of Wuwei Ganlu, 252 potential active components were docked with TNF and 163 with PTGS2, indicating good binding of the components with potential key targets. The study preliminarily explored the mechanism of Wuwei Ganlu in treating KOA to provide a reference for the further development and utilization of Tibetan medicated bath that has been included in the UN Intangible Cultural Heritage.


Assuntos
Medicamentos de Ervas Chinesas , Osteoartrite do Joelho , Bases de Dados Factuais , Humanos , Inflamação , Simulação de Acoplamento Molecular
7.
Pathol Oncol Res ; 27: 528050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257524

RESUMO

Herein we present a previously unreported rare case of mucinous adenocarcinoma arising from a congenital ejaculatory duct cyst. Radiographic and endoscopic examinations revealed the tumor occurred in a cyst running through the prostate. Initially, the immunohistochemical pathology results showed that it was a metastatic mucinous adenocarcinoma, but no other primary lesions were clinically evidenced. Based on the embryonic development process of the male urogenital tract, the malformation of the patient's ejaculatory duct, and the pathological examination of the resected specimen, we considered the tumor to be a primary mucinous adenocarcinoma which originating from the hypoplastic ejaculatory duct. The tumor may have developed from the foci of intestinal metaplasia from cloacal remnants during embryonic development.


Assuntos
Adenocarcinoma Mucinoso/patologia , Cistos/patologia , Ductos Ejaculatórios/patologia , Neoplasias dos Genitais Masculinos/patologia , Adenocarcinoma Mucinoso/diagnóstico , Idoso , Neoplasias dos Genitais Masculinos/diagnóstico , Humanos , Masculino
8.
J Am Soc Mass Spectrom ; 32(6): 1352-1360, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33605729

RESUMO

Crustacean hyperglycemic hormones (CHHs) are a family of neuropeptides that were discovered in multiple tissues in crustaceans, but the function of most isoforms remains unclear. Functional discovery often requires comprehensive qualitative profiling and quantitative analysis. The conventional enzymatic digestion method has several limitations, such as missing post-translational modification (PTM) information, homology interference, and incomplete sequence coverage. Herein, by using a targeted top-down method, facilitated by higher sensitivity instruments and hybrid fragmentation modes, we achieved the characterization of two CHH isoforms from the sinus glands (SG-CHH) and the pericardial organs (PO-CHH) from the Atlantic blue crab, Callinectes sapidus, with improved sequence coverage compared to earlier studies. In this study, both label-free and isotopic labeling approaches were adopted to monitor the response of CHHs and CHH precursor-related peptide (CPRP) under low pH stress. The identical trends of CPRP and CHH expression indicated that CPRP could serve as an ideal probe in tracking the CHH expression level changes, which would greatly simplify the quantitative analysis of large peptides. Furthermore, the distinct patterns of changes in the expression of CHHs in the SG and the PO suggested their tissue-specific functions in the regulation of low pH stress. Ion mobility-mass spectrometry (IM-MS) was also employed in this study to provide conformation analysis of both CHHs and CPRPs from different tissues.


Assuntos
Proteínas de Artrópodes/análise , Braquiúros/química , Braquiúros/fisiologia , Hormônios de Invertebrado/análise , Espectrometria de Massas/métodos , Proteínas do Tecido Nervoso/análise , Precursores de Proteínas/análise , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Concentração de Íons de Hidrogênio , Hormônios de Invertebrado/química , Hormônios de Invertebrado/metabolismo , Espectrometria de Mobilidade Iônica , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Peptídeos/análise , Peptídeos/metabolismo , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Proteômica/métodos , Estresse Fisiológico
9.
Anal Chem ; 92(19): 13361-13368, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32865977

RESUMO

Glycosylation is a major protein post-translational modification whose dysregulation has been associated with many diseases. Herein, an on-tissue chemical derivatization strategy based on positively charged hydrazine reagent (Girard's reagent P) coupled with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was developed for analysis of N-glycans from FFPE treated tissue sections. The performance of the proposed approach was evaluated by analysis of monosaccharides, oligosaccharides, N-glycans released from glycoproteins, as well as MS imaging of N-glycans from human cancer tissue sections. The results demonstrated that the signal-to-noise ratios for target saccharides were notably improved after chemical derivatization, in which signals were enhanced by 230-fold for glucose and over 28-fold for maltooctaose. Improved glycome coverage was obtained for N-glycans derived from glycoproteins and tissue samples after chemical derivatization. Furthermore, on-tissue derivatization was applied for MALDI-MSI of N-glycans from human laryngeal cancer and ovarian cancer tissues. Differentially expressed N-glycans among the tumor region, adjacent normal tissue region, and tumor proximal collagen stroma region were imaged, revealing that high-mannose type N-glycans were predominantly expressed in the tumor region. Overall, our results indicate that the on-tissue labeling strategy coupled with MALDI-MSI shows great potential to spatially characterize N-glycan expression within heterogeneous tissue samples with enhanced sensitivity. This study provides a promising approach to better understand the pathogenesis of cancer related aberrant glycosylation, which is beneficial to the design of improved clinical diagnosis and therapeutic strategies.


Assuntos
Carcinoma de Células Escamosas/diagnóstico , Formaldeído/química , Indicadores e Reagentes/química , Neoplasias Laríngeas/diagnóstico , Neoplasias Ovarianas/diagnóstico , Polissacarídeos/análise , Fixação de Tecidos , Feminino , Humanos , Hidrazinas/química , Inclusão em Parafina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Anal Chem ; 92(1): 947-956, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769969

RESUMO

The knowledge of ligand-protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand-protein interactions. Nevertheless, previous footprinting studies are typically performed at the residue level, and therefore, the resolution may not be high enough to couple with conventional crystallography techniques. Herein we developed a subresidue footprinting strategy based on the discovery that carbene labeling produces subresidue peptide isomers and the intensity changes of these isomers in response to ligand binding can be exploited to delineate ligand-protein topography at the subresidue level. The established workflow combines carbene footprinting, extended liquid chromatographic separation, and ion mobility (IM)-MS for efficient separation and identification of subresidue isomers. Analysis of representative subresidue isomers located within the binding cleft of lysozyme and those produced from an amyloid-ß segment have both uncovered structural information heretofore unavailable by residue-level footprinting. Lastly, a "real-world" application shows that the reactivity changes of subresidue isomers at Phe399 can identify the interactive nuances between estrogen-related receptor α, a potential drug target for cancer and metabolic diseases, with its three ligands. These findings have significant implications for drug design. Taken together, we envision the subresidue-level resolution enabled by IM-MS-coupled carbene footprinting can bridge the gap between structural MS and the more-established biophysical tools and ultimately facilitate diverse applications for fundamental research and pharmaceutical development.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Metano/análogos & derivados , Muramidase/metabolismo , Receptores de Estrogênio/metabolismo , Peptídeos beta-Amiloides/química , Animais , Sítios de Ligação , Galinhas , Humanos , Ligantes , Metano/química , Muramidase/química , Ligação Proteica , Receptores de Estrogênio/química , Receptor ERRalfa Relacionado ao Estrogênio
11.
Nat Commun ; 10(1): 186, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643139

RESUMO

Tetrathiomolybdate (TM) is used in the clinic for the treatment of Wilson's disease by targeting the cellular copper efflux protein ATP7B (WLN). Interestingly, both TM and WLN are associated with the efficacy of cisplatin, a widely used anticancer drug. Herein, we show that TM induces dimerization of the metal-binding domain of ATP7B (WLN4) through a unique sulfur-bridged Mo2S6O2 cluster. TM expels copper ions from Cu-WLN4 and forms a copper-free dimer. The binding of Mo to cysteine residues of WLN4 inhibits platination of the protein. Reaction with multi-domain proteins indicates that TM can also connect two domains in the same molecule, forming Mo-bridged intramolecular crosslinks. These results provide structural and chemical insight into the mechanism of action of TM against ATPase, and reveal the molecular mechanism by which TM attenuates the cisplatin resistance mediated by copper efflux proteins.


Assuntos
Antineoplásicos/farmacologia , Quelantes/farmacologia , Cisplatino/farmacologia , ATPases Transportadoras de Cobre/metabolismo , Molibdênio/farmacologia , Antineoplásicos/uso terapêutico , Quelantes/uso terapêutico , Cisplatino/uso terapêutico , Cobre/metabolismo , ATPases Transportadoras de Cobre/antagonistas & inibidores , ATPases Transportadoras de Cobre/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/uso terapêutico , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Molibdênio/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Platina/metabolismo , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína
12.
Molecules ; 23(5)2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29710800

RESUMO

Squalene synthase (SQS), a key downstream enzyme involved in the cholesterol biosynthetic pathway, plays an important role in treating hyperlipidemia. Compared to statins, SQS inhibitors have shown a very significant lipid-lowering effect and do not cause myotoxicity. Thus, the paper aims to discover potential SQS inhibitors from Traditional Chinese Medicine (TCM) by the combination of molecular modeling methods and biological assays. In this study, cynarin was selected as a potential SQS inhibitor candidate compound based on its pharmacophoric properties, molecular docking studies and molecular dynamics (MD) simulations. Cynarin could form hydrophobic interactions with PHE54, LEU211, LEU183 and PRO292, which are regarded as important interactions for the SQS inhibitors. In addition, the lipid-lowering effect of cynarin was tested in sodium oleate-induced HepG2 cells by decreasing the lipidemic parameter triglyceride (TG) level by 22.50%. Finally. cynarin was reversely screened against other anti-hyperlipidemia targets which existed in HepG2 cells and cynarin was unable to map with the pharmacophore of these targets, which indicated that the lipid-lowering effects of cynarin might be due to the inhibition of SQS. This study discovered cynarin is a potential SQS inhibitor from TCM, which could be further clinically explored for the treatment of hyperlipidemia.


Assuntos
Cinamatos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Cinamatos/química , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/química , Inibidores Enzimáticos/química , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ácido Oleico/efeitos adversos , Triglicerídeos/análise
13.
J Am Soc Mass Spectrom ; 28(12): 2658-2664, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28887698

RESUMO

Specific protein-metal interactions (PMIs) fulfill essential functions in cells and organic bodies, and activation of these functions in vivo are mostly modulated by the complex environmental factors, including pH value, small biomolecules, and salts. Specifically, the role of salts in promoting specific PMIs and their competition among various metals has remained untapped mainly due to the difficulty to distinguish nonspecific PMIs from specific PMIs by classic spectroscopic techniques. Herein, we report Hofmeister salts differentially promote the specific PMIs by combining nanoelectrospray ionization mass spectrometry and spectroscopic techniques (fluorescence measurement and circular dichroism). Furthermore, to explore the influence of salts in competitive binding between metalloproteins and various metals, we designed a series of competitive experiments and applied to a well-defined model system, the competitive binding of zinc (II) and arsenic (III) to holo-promyelocytic leukemia protein (PML). These experiments not only provided new insights at the molecular scale as complementary to previous NMR and spectroscopic results, but also deduced the relative binding ability between zinc finger proteins and metals at the molecular scale, which avoids the mass spectrometric titration-based determination of binding constants that is frequently affected and often degraded by variable solution conditions including salt contents. Graphical Abstract ᅟ.


Assuntos
Metais/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Sais/metabolismo , Dedos de Zinco , Arsênio/metabolismo , Dicroísmo Circular , Humanos , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray , Zinco/metabolismo
14.
Chem Sci ; 8(1): 214-222, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451168

RESUMO

CBT-Cys click condensation reaction has a high second-order reaction rate constant and has found wide applicability in recent years. However, its reaction mechanism has not been experimentally validated and its application for identifying bioactive N-terminal Cys peptides in real clinical samples has not been reported. Herein, firstly, by employing induced nanoelectrospray ionization-mass spectrometry (InESI-MS) and a home-built micro-reactor, we successfully intercepted and structurally characterized the crucial intermediate in this click reaction for the first time. With the intermediate, the proposed mechanism of this reaction was corroborated. Moreover, we also applied this MS setup to monitor the reaction in real time and obtained the second-order reaction rate constants of this reaction at different pH values. After mechanistic study, we applied this click reaction for identifying bioactive N-terminal cysteine peptides in amniotic fluid (AF). Eight unique N-terminal Cys peptides in AF, three of which are located in the functional domain regions of their corresponding proteins, were identified with a false positive rate less than 1%. One of the three peptides was found able to inhibit the growth of uterine endometrial cancer HEC-1-B cells but not the endometrial normal cells via a typical apoptotic pathway. With its mechanism satisfactorily elucidated, the kinetic parameters obtained, as well as its application for fishing bioactive N-terminal Cys peptides from vast complex clinical samples, we anticipate that this CBT-Cys click reaction could be applied more widely for the facile isolation, site-specific identification, and quantification of N-terminal Cys-containing peptides in complex biological samples.

15.
Chem Commun (Camb) ; 53(25): 3567-3570, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28288221

RESUMO

d-Luciferin is the most widely used substrate for bioluminescence (BL) applications but its low chemical stability always affects its performance. Herein, we rationally designed two chemically stable precursor molecules CBT-d-cystine-CBT (d-1) and CBT-l-cystine-CBT (l-1), and subjected them to reduction-controlled condensation to form 1-oligomer and subsequent proteolysis to yield d-aminoluciferin for BL generation in cells and in vivo. We envision that our precursor molecules might serve as d-luciferin alternatives for a wide range of BL applications in the near future.


Assuntos
Benzotiazóis/metabolismo , Medições Luminescentes , Animais , Benzotiazóis/síntese química , Benzotiazóis/química , Linhagem Celular Tumoral , Cistina/química , Glutationa/química , Glutationa/metabolismo , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Transplante Heterólogo
16.
Molecules ; 21(9)2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657032

RESUMO

Cyclin-dependent kinase 2 (CDK2), a member of Cyclin-dependent kinases (CDKs), plays an important role in cell division and DNA replication. It is regarded as a desired target to treat cancer and tumor by interrupting aberrant cell proliferation. Compared to lower subtype selectivity of CDK2 ATP-competitive inhibitors, CDK2 allosteric inhibitor with higher subtype selectivity has been used to treat CDK2-related diseases. Recently, the first crystal structure of CDK2 with allosteric inhibitor has been reported, which provides new opportunities to design pure allosteric inhibitors of CDK2. The binding site of the ATP-competition inhibitors and the allosteric inhibitors are partially overlapped in space position, so the same compound might interact with the two binding sites. Thus a novel screening strategy was essential for the discovery of pure CDK2 allosteric inhibitors. In this study, pharmacophore and molecular docking were used to screen potential CDK2 allosteric inhibitors and ATP-competition inhibitors from Traditional Chinese Medicine (TCM). In the docking result of the allosteric site, the compounds which can act with the CDK2 ATP site were discarded, and the remaining compounds were regarded as the potential pure allosteric inhibitors. Among the results, prostaglandin E1 and nordihydroguaiaretic acid (NDGA) were available and their growth inhibitory effect on human HepG2 cell lines was determined by MTT assay. The two compounds could substantially inhibit the growth of HepG2 cell lines with an estimated IC50 of 41.223 µmol/L and 45.646 µmol/L. This study provides virtual screening strategy of allosteric compounds and a reliable method to discover potential pure CDK2 allosteric inhibitors from TCM. Prostaglandin E1 and NDGA could be regarded as promising candidates for CDK2 allosteric inhibitors.

17.
Biosens Bioelectron ; 83: 200-4, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27131992

RESUMO

Copper is an essential micronutrient involved in fundamental life processes but using a bioluminescence (BL) probe to selectively sense Cu(2+)in vitro or image Cu(2+)in vivo is still unavailable. Herein, a latent BL probe hydrazide d-luciferin (1) was rationally designed and successfully applied it for selective detection of Cu(2+)in vitro and imaging Cu(2+) in living cells and in tumors. Upon the catalysis of Cu(2+), 1 was converted to d-luciferin and turned on the BL in the presence of firefly luciferase (fLuc). In vitro tests indicated that 1 could be applied for highly selective sensing Cu(2+) within the range of 0-80µM with a limit of detection (LOD) of 39.0nM. Cell and animal experiments indicated that 1 could be applied for specific BL imaging of Cu(2+) in living cells and tumors and the BL signal of 1 was more stable and longer than that of d-luciferin. We envision that this unique probe 1 might serve as an elucidative tool for further exploration of the biological roles of Cu(2+) in physiological and pathological processes in the near future.


Assuntos
Benzotiazóis/química , Cobre/análise , Substâncias Luminescentes/química , Medições Luminescentes/métodos , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Cátions Bivalentes/análise , Linhagem Celular Tumoral , Humanos , Hidrazinas/química , Luciferases de Vaga-Lume/química , Camundongos
18.
Analyst ; 140(8): 2623-7, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25742915

RESUMO

Dissociation of disulfide is normally mandatory prior to disulfide peptide sequencing via electrospray ionization collision induced dissociation mass spectrometry (ESI-CID-MS). Herein, a facile method for directly sequencing intact disulfide peptides was proposed. The basic principles involved were electrolyte-enhanced corona discharge in ESI and the following oxidative cleavage reaction.


Assuntos
Dissulfetos/química , Peptídeos/química , Análise de Sequência de Proteína/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Humanos , Insulina/química , Dados de Sequência Molecular , Oxirredução
19.
Zhongguo Zhong Yao Za Zhi ; 27(2): 135-9, 2002 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-12774390

RESUMO

OBJECTIVE: In order to study on effects of soy extract on energy metabolims in ovariectomized rats. METHOD: 90 Wistar rats were randomly divided into 9 groups: control group, sham group, model group, estrogen group, soy isoflavone group of high dose, soy isoflavone of low dose, soy extract of high dose, soy extract of low dose, 10 rats each group. Beside of control and sham groups, the rest rats were ovariectomized. One week after operation, the rats were treatmented with different drugs, measument of body weigh and feed weigh each week. Six week after operation, the rats were killed, serum were taken, abdomen lipid were removed and weight. RESULT: The ovariectomized rats took more food and got weight gain significantly; Body mess index(BMI), Abdomen lipid weigh and food transform rate in Model group increased significantly than control and sham groups. Administration of estrogen or soy extract or soy isoflavone could block these changes in ovariectomized rats, but soy polysaccharides did not have the effects. CONCLUSION: Ovariectomized rats have imbalance of energy metabolism, weigh gain and accumulation of abdomen lipid; administration of estrogen, soy extracts or soy isoflavone could attenuate these changes induced by ovariectomizing.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Glycine max/química , Isoflavonas/farmacologia , Animais , Índice de Massa Corporal , Estrogênios/farmacologia , Feminino , Isoflavonas/isolamento & purificação , Ovariectomia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Ratos , Ratos Wistar , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA