Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Med ; 41(2): 615-623, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29207041

RESUMO

Mitochondria are important organelles in virtually all eukaryotic cells, and are involved in a wide range of physiological and pathophysiological processes. Besides the generation of cellular energy in the form of adenosine triphosphate, mitochondria are also involved in calcium homeostasis, reactive oxygen species production and the activation of the intrinsic cell death pathway, thus determining cell survival and death. Mitochondrial abnormalities have been implicated in a wide range of disorders, including neurodegenerative disease such as Parkinson's disease (PD), and considered as a primary cause and central event responsible for the progressive loss of dopaminergic neurons in PD. Thus, reversion or attenuation of mitochondrial dysfunction should alleviate the severity or progression of the disease. The present review systematically summarizes the possible mechanisms associated with mitochondria­mediated dopaminergic neuron damage in PD, in an attempt to elucidate the requirement for further studies for the development of effective PD treatments.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/genética , Doença de Parkinson/genética , Cálcio/metabolismo , Morte Celular/genética , Neurônios Dopaminérgicos/patologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética
2.
Int J Mol Med ; 37(2): 429-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26677001

RESUMO

Oxidative stress is widely considered as a central event in the pathogenesis of Parkinson's disease (PD). The mechanisms underlying the oxidative damage-mediated loss of dopaminergic neurons in PD are not yet fully understood. Accumulating evidence has indicated that oxidative DNA damage plays a crucial role in programmed neuronal cell death, and is considered to be at least partly responsible for the degeneration of dopaminergic neurons in PD. This process involves a number of signaling cascades and molecular proteins. Proliferating cell nuclear antigen (PCNA) is a pleiotropic protein affecting a wide range of vital cellular processes, including chromatin remodelling, DNA repair and cell cycle control, by interacting with a number of enzymes and regulatory proteins. In the present study, the exposure of PC12 cells to 1-methyl-4-phenylpyridinium (MPP+) led to the loss of cell viability and decreased the expression levels of PCNA in a dose- and time-dependent manner, indicating that this protein may be involved in the neurotoxic actions of MPP+ in dopaminergic neuronal cells. In addition, a significant upregulation in p53 expression was also observed in this cellular model of PD. p53 is an upstream inducer of PCNA and it has been recognized as a key contributor responsible for dopaminergic neuronal cell death in mouse models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. This indicates that MPP+-induced oxidative damage is mediated by the downregulation of PCNA through the p53 pathway in a cellular model of PD. Thus, our results may provide some novel insight into the molecular mechanisms responsible for the development of PD and provide new possible therapeutic targets for the treatment of PD.


Assuntos
Doença de Parkinson/genética , Antígeno Nuclear de Célula em Proliferação/biossíntese , Proteína Supressora de Tumor p53/biossíntese , 1-Metil-4-fenilpiridínio/administração & dosagem , Animais , Dano ao DNA/genética , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Células PC12 , Doença de Parkinson/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Ratos , Proteína Supressora de Tumor p53/genética
3.
Int J Mol Med ; 34(5): 1358-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25174304

RESUMO

The mitochondria are the most important cytoplasmic organelles in determining cell survival and death. Mitochondrial dysfunction leads to a wide range of disorders, including neurodegenerative diseases. The central events in the mitochondrial­dependent cell death pathway are the activation of the mitochodrial permeability transition pore (mPTP) and the disruption of mitochondrial membrane potential, which cause the release of apoptogenic molecules and finally lead to cell death. This is thought to be at least partly responsible for the loss of dopaminergic neurons in Parkinson's disease (PD); thus, the attenuation of mitochondrial dysfunction may contribute to alleviating the severity and progression of this disease. Guanosine is a pleiotropic molecule affecting multiple cellular processes, including cellular growth, differentiation and survival. Its protective effects on the central nervous system and and on several cell types by inhibiting apoptosis have been shown in a number of pathological conditions. This study aimed to analyze the ability of guanosine to protect neuronal PC12 cells from the toxicity induced by 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which mediates selective damage to dopaminergic neurons and causes irreversible Parkinson-like symptoms in humans and primates. Our results demonstrated that the apoptosis of PC12 cells induced by MPP+ was significantly prevented by pre-treatment for 3 h with guanosine. In addition, guanosine attenuated the MPP+-induced collapse of mitochondrial transmembrane potential and prevented the sebsequent activation of caspase-3, thereby protecting dopaminergic neurons against mitochondrial stress-induced damage.


Assuntos
Guanosina/farmacologia , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , 1-Metil-4-fenilpiridínio/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
4.
Int J Mol Med ; 32(1): 108-14, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23615851

RESUMO

Reactive oxygen species (ROS) elicited by oxidative stress are widely recognized as a major initiator in the dege-neration of dopaminergic neurons distinctive of Parkinson's disease (PD). The interaction of ROS with mitochondria triggers sequential events in the mitochondrial cell death pathway, which is thought to be responsible for ROS-mediated neurodegeneration in PD. α-lipoic acid (LA) is a pleiotropic compound with potential pharmacotherapeutic value against a range of pathophysiological insults. Its protective actions against oxidative damage by scavenging ROS and reducing production of free radicals have been reported in various in vitro and in vivo systems. This study analyzed the ability of LA to protect PC12 neuronal cells from toxicity of 1-methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) which is known to kill dopaminergic neurons selectively and to cause severe parkinsonism-like symptoms in humans and primate animals. Our results demonstrate that the apoptosis of PC12 cells elicited by MPP+ could be significantly prevented by pretreatment with LA for 1 h. In addition, LA inhibits intercellular ROS levels and the mitochondrial transmembrane permeability, the key players in the pathogenesis of PD, thereby protecting dopaminergic neuronal cells against oxidative damage.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Apoptose/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Tióctico/farmacologia , Animais , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células PC12 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA