Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 239: 113967, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761494

RESUMO

The re-bridging of the deficient nerve is the main problem to be solved after the functional impairment of the peripheral nerve. In this study, a directionally aligned polycaprolactone/triiron tetraoxide (PCL/Fe3O4) fiber scaffolds were firstly prepared by electrospinning technique, and further then grafted with IKVAV peptide for regulating DRG growth and axon extension in peripheral nerve regeneration. The results showed that oriented aligned magnetic PCL/Fe3O4 composite scaffolds were successfully prepared by electrospinning technique and possessed good mechanical properties and magnetic responsiveness. The PCL/Fe3O4 scaffolds containing different Fe3O4 concentrations were free of cytotoxicity, indicating the good biocompatibility and low cytotoxicity of the scaffolds. The IKVAV-functionalized PCL/Fe3O4 scaffolds were able to guide and promote the directional extension of axons, the application of external magnetic field and the grafting of IKVAV peptides significantly further promoted the growth of DRGs and axons. The ELISA test results showed that the AP-10 F group scaffolds promoted the secretion of nerve growth factor (NGF) from DRG under a static magnetic field (SMF), thus promoting the growth and extension of axons. Importantly, the IKVAV-functionalized PCL/Fe3O4 scaffolds could significantly up-regulate the expression of Cntn2, PCNA, Sox10 and Isca1 genes related to adhesion, proliferation and magnetic receptor function under the stimulation of SMF. Therefore, IKVAV-functionalized PCL/Fe3O4 composite oriented scaffolds have potential applications in neural tissue engineering.


Assuntos
Poliésteres , Alicerces Teciduais , Animais , Poliésteres/química , Ratos , Alicerces Teciduais/química , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/química , Regeneração Nervosa/efeitos dos fármacos , Campos Magnéticos , Compostos Férricos/química , Compostos Férricos/farmacologia , Ratos Sprague-Dawley , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células PC12
2.
Bioact Mater ; 35: 401-415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38384987

RESUMO

Peripheral nerve injury (PNI) seriously affects the health and life of patients, and is an urgent clinical problem that needs to be resolved. Nerve implants prepared from various biomaterials have played a positive role in PNI, but the effect should be further improved and thus new biomaterials is urgently needed. Ovalbumin (OVA) contains a variety of bioactive components, low immunogenicity, tolerance, antimicrobial activity, non-toxicity and biodegradability, and has the ability to promote wound healing, cell growth and antimicrobial properties. However, there are few studies on the application of OVA in neural tissue engineering. In this study, OVA implants with different spatial structures (membrane, fiber, and lyophilized scaffolds) were constructed by casting, electrospinning, and freeze-drying methods, respectively. The results showed that the OVA implants had excellent physicochemical properties and were biocompatible without significant toxicity, and can promote vascularization, show good histocompatibility, without excessive inflammatory response and immunogenicity. The in vitro results showed that OVA implants could promote the proliferation and migration of Schwann cells, while the in vivo results confirmed that OVA implants (the E5/70% and 20 kV 20 µL/min groups) could effectively regulate the growth of blood vessels, reduce the inflammatory response and promote the repair of subcutaneous nerve injury. Further on, the high-throughput sequencing results showed that the OVA implants up-regulated differential expression of genes related to biological processes such as tumor necrosis factor-α (TNF-α), phosphatidylinositide 3-kinases/protein kinase B (PI3K-Akt) signaling pathway, axon guidance, cellular adhesion junctions, and nerve regeneration in Schwann cells. The present study is expected to provide new design concepts and theoretical accumulation for the development of a new generation of nerve regeneration implantable biomaterials.

3.
Int J Biol Macromol ; 253(Pt 4): 127015, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37758111

RESUMO

Peripheral nerve injuries (PNI) currently have limited therapeutic efficacy, and functional scaffolds have been shown to be effective for treating PNI. Ovalbumin (OVA) is widely used as a natural biomaterial for repairing damaged tissues due to its excellent biocompatibility and the presence of various bioactive components. However, there are few reports on the repair of PNI by ovalbumin. In this study, a novel bionic functionalized topological scaffold based on ovalbumin and grafted with tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide was constructed by micro-molding method and surface-biomodification technology. The scaffolds were subjected to a series of evaluations in terms of morphology, mechanics, hydrophilicity, and biocompatibility, and the related molecular mechanisms were further penetrated. The results showed that the scaffolds prepared in this study had aligned ridge/groove structure, good mechanical properties and biocompatibility, and could be used as carriers to slowly release YIGSR, which effectively promoted the proliferation, migration and elongation of Schwann Cells (SCs), and significantly up-regulated the gene expression related to proliferation, apoptosis, migration and axon regeneration. Therefore, the bionic functional topological scaffold has significant application potential for promoting peripheral nerve regeneration and provides a new therapeutic option for repairing PNI.


Assuntos
Axônios , Traumatismos dos Nervos Periféricos , Humanos , Ovalbumina/metabolismo , Regeneração Nervosa/fisiologia , Células de Schwann , Peptídeos/química , Traumatismos dos Nervos Periféricos/terapia , Alicerces Teciduais/química
4.
Burns Trauma ; 10: tkac030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071954

RESUMO

Background: Anisotropic topologies are known to regulate cell-oriented growth and induce cell differentiation, which is conducive to accelerating nerve regeneration, while co-culture of endothelial cells (ECs) and Schwann cells (SCs) can significantly promote the axon growth of dorsal root ganglion (DRG). However, the synergistic regulation of EC and SC co-culture of DRG behavior on anisotropic topologies is still rarely reported. The study aims to investigate the effect of anisotropic topology co-cultured with Schwann cells and endothelial cells on dorsal root ganglion behavior for promoting peripheral nerve regeneration. Methods: Chitosan/artemisia sphaerocephala (CS/AS) scaffolds with anisotropic topology were first prepared using micro-molding technology, and then the surface was modified with dopamine to facilitate cell adhesion and growth. The physical and chemical properties of the scaffolds were characterized through morphology, wettability, surface roughness and component variation. SCs and ECs were co-cultured with DRG cells on anisotropic topology scaffolds to evaluate the axon growth behavior. Results: Dopamine-modified topological CS/AS scaffolds had good hydrophilicity and provided an appropriate environment for cell growth. Cellular immunofluorescence showed that in contrast to DRG growth alone, co-culture of SCs and ECs could not only promote the growth of DRG axons, but also offered a stronger guidance for orientation growth of neurons, which could effectively prevent axons from tangling and knotting, and thus may significantly inhibit neurofibroma formation. Moreover, the co-culture of SCs and ECs could promote the release of nerve growth factor and vascular endothelial growth factor, and up-regulate genes relevant to cell proliferation, myelination and skeletal development via the PI3K-Akt, MAPK and cytokine and receptor chemokine pathways. Conclusions: The co-culture of SCs and ECs significantly improved the growth behavior of DRG on anisotropic topological scaffolds, which may provide an important basis for the development of nerve grafts in peripheral nerve regeneration.

5.
Brain Res Bull ; 165: 161-168, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049350

RESUMO

The effects of autophagy on neuronal damage can be positive or detrimental negative. Through establishing a model of fetal rat cortical neuron hydraulic shock injury, dipotassium bisperoxo (picolinoto) oxovanadate (V) [bpv(pic)] was used to inhibit PTEN at different time points post-injury and autophagy level after neuronal injury was assessed. Neurons were divided into several intervention groups according to the time point at which bpv(pic) was used to inhibit autophagy, normal neurons and injuried neurons were set as two control groups. Growth of neurons in each group was assessed through immunofluorescence staining. Expression of the autophagy-related proteins LC3-II and LC3-I was analyzed by western blot. Expression of PTEN, mTOR and Beclin-1 was detected by RT-PCR. The number of autophagosomes in the normal group, injury control group and 24 h, 36 h intervention groups were assessed by electron microscope. We found that autophagy was enhanced after neuronal injury and that the levels of LC3-II was significantly reduced by bpv (pic) intervention. The growth of the injury control groups was worse than normal groups, while improved through bpv(pic) intervention at 24 h and 30 h after injured. Western blot analysis showed that the LC3-II and LC3-II/LC3-I ratios of cells increased post-injury, and autophagy induction was evident by electron microscopy. These effects were confirmed by RT-PCR analysis. Taken together, these data suggest that autophagy is activated after injury in neurons while can be inhibited by bpv(pic) administration and then promote the repair of injured neurons.


Assuntos
Autofagia/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Animais , Proteína Beclina-1/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo
6.
Colloids Surf B Biointerfaces ; 173: 689-697, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384265

RESUMO

Suitable micro/nanofibers orientation in tissue engineered scaffold could guide cells outgrowth and migration during tissue regeneration. However, it is still a challenge to prepare a simple, high-strength and aligned fibers scaffold. Herein, we report a facile strategy to construct high-strength silk fibroin (SF) scaffolds with aligned fibers orientation by crosslinking aligned SF fibers with regenerated SF solution for guiding neuronal growth direction. The fibers could be easily controlled within the same orientation. The aligned fibers and protein-protein interfacial bonding between SF fibers and regenerated SF solution reinforced the mechanical properties to form a high-strength scaffold. Schwann cells and dorsal root ganglion (DRG) neuron could migrate along with the uniform orientation of scaffolds. Mecobalamin was loaded into aligned SF scaffold to promote neurite growth and neuron survival through methylation cycle by activation of Erk1/2 and Akt. Additionally, mecobalamin loaded aligned SF scaffold demonstrated good biocompatibility, inflammatory cells also showed decreased profiles with time extensions. This facile strategy could enrich the fabrication methods to prepare aligned fibers scaffolds in the tissue engineering.


Assuntos
Fibroínas/química , Nanofibras/química , Engenharia Tecidual/métodos , Alicerces Teciduais , Vitamina B 12/análogos & derivados , Animais , Bombyx , Movimento Celular/efeitos dos fármacos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Fibroínas/ultraestrutura , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Expressão Gênica/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nanofibras/ultraestrutura , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Coelhos , Ratos , Ratos Sprague-Dawley , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/fisiologia , Resistência à Tração , Vitamina B 12/química , Vitamina B 12/farmacologia
7.
J Biomed Mater Res A ; 106(7): 1951-1964, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29575695

RESUMO

Various hydrogels made from natural or synthetic polymers have been widely used in biologic tissues, drug delivery, and artificial implants due to their good biocompatibility, indicating a promising perspective in regenerative medicine. In the present study, a composite hydrogel named polyacrylamide/graphene oxide/gelatin/sodium alginate (PAM/GO/Gel/SA) for accelerating peripheral nerve regeneration was fabricated through in situ free radical polymerization for the first time. A series of physicochemical properties including morphology, porosity, swelling behaviors, component, mechanical properties, and in vitro degradation behavior of the prepared composite hydrogel were characterized. The effects of the composite hydrogel on Schwann cells growth were evaluated and the related molecular mechanism was further penetrated. The results showed that the prepared PAM/GO/Gel/SA composite hydrogels displayed different color appearance as the function of component variations. The surface morphology, components, swelling ratio, mechanical properties, and porosity were all changed with the concentration alteration of each ingredient, while no obvious degradation behavior was observed, indicating a controllable physicochemical property. The culture of cells exhibited that the composite hydrogels could well support the attachment and proliferation of Schwann cells. The gene expression levels of Sox10, GAP43, and myelin basic protein (MBP) in PGG0.5 SYR1 and PGG1 SYR0.5 were higher than those of NC. This study may provide important theoretical and experimental basis for the design and development of hydrogel scaffolds for nerve tissue engineering application. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1951-1964, 2018.


Assuntos
Resinas Acrílicas/farmacologia , Alginatos/farmacologia , Materiais Biocompatíveis/farmacologia , Gelatina/farmacologia , Grafite/farmacologia , Hidrogéis/farmacologia , Células de Schwann/citologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Peptídeos/farmacologia , Ratos , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Resistência à Tração
8.
Colloids Surf B Biointerfaces ; 144: 81-89, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27070055

RESUMO

Recently, chemotherapy-based polymeric nanoparticles have been extensively investigated for solid tumor treatment. Tumor targeted nanoparticles demonstrated great potential for improved accumulation in the tumor tissue, superior anticancer activity and reduced side effects. Thus, inulin-ibuprofen polymer was synthesized by esterification between inulin and ibuprofen, and RGD targeted epirubicin (EPB) loaded nanoparticles were prepared by the self-assembly of inulin-ibuprofen polymer and in situ encapsulation of EPB. RGD conjugated EPB loaded nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). The EPB release from the nanoparticles showed pH-dependent profile and accelerated by the decreased pH value, which would favor the effective drug delivery in vivo. Intracellular uptake analysis suggested that RGD conjugated nanoparticles could be easily internalized by the cancer cells. In vitro cytotoxicity revealed that RGD conjugated EPB loaded nanoparticles exhibited the better antitumor efficacy compared with non-conjugated nanoparticles. More importantly, RGD conjugated EPB loaded nanoparticles showed superior anticancer effects and reduced toxicity than free EPB and non-conjugated nanoparticles by in vivo antitumor activity, EPB biodistribution and histology analysis.


Assuntos
Sistemas de Liberação de Medicamentos , Epirubicina/farmacologia , Ibuprofeno/química , Inulina/química , Nanopartículas/química , Oligopeptídeos/química , Animais , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Epirubicina/uso terapêutico , Humanos , Ibuprofeno/síntese química , Espaço Intracelular/metabolismo , Inulina/síntese química , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Nanopartículas/ultraestrutura , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos
9.
J Pharm Sci ; 104(12): 4185-4196, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26398477

RESUMO

One major obstacle in the application of drug delivery systems for cancer chemotherapy is their poor penetration in tumor tissues. Conjugating active ligand moieties to the surface of nanoparticles may be a promising approach for enhancing the tumor accumulation and penetration of nanoparticles. Herein, the cell-penetrating peptide twin-arginine translocation (Tat)-conjugated epirubicin-loaded poly(lactic-glycolic acid) nanoparticles were prepared to achieve deep tumor penetration. The morphology and size of nanoparticles were characterized by scanning electron microscopy and dynamic light scattering, and the biological behaviors of nanoparticles were evaluated. It is demonstrated that Tat-conjugated nanoparticles have a significant improvement in antitumor activity and biodistribution compared with nonconjugated nanoparticles. Importantly, Tat conjugated on the surface of nanoparticles could facilitate the encapsulated drug penetration into deeper tumor tissue. Additionally, Tat-conjugated nanoparticles have good biocompatibility, as demonstrated by hemolytic tests, in vitro cytotoxicity, and histology study. These results suggested that the Tat-conjugated nanoparticles, as a powerful delivery system for chemotherapeutic drug, would have a promising application in human cancer therapy.


Assuntos
Arginina/metabolismo , Peptídeos Penetradores de Células/farmacologia , Epirubicina/farmacologia , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Sistema de Translocação de Argininas Geminadas/farmacologia , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Humanos , Camundongos , Neoplasias/metabolismo , Ratos , Distribuição Tecidual/fisiologia
10.
J Neurosci Res ; 92(7): 944-54, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687774

RESUMO

Mulberroside A is a natural polyhydroxylated stilbene compound present at relatively high abundance in the roots and twigs of Morus alba L. It is known for its nephroprotective, hypoglycemic, and antidiabetic effects. Because its metabolite, oxyresveratrol, possessed purported anti-inflammatory and neuroprotective effects, we proposed that mulberroside A may elicit neuroprotective effects that can be used in the treatment of brain ischemic injury. Therefore, we decided to investigate the pharmacological properties of mulberroside A in primary culture of rat cortical neurons after oxygen-glucose deprivation followed by reperfusion (OGD/R), evaluating its ability to counteract the hypoxia-ischemia impairment. The results showed that mulberroside A elicited neuroprotective effects comparable to nimodipine. The mechanistic studies showed that mulberroside A decreased the expressions of tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6 and inhibited the activation of NALP3, caspase-1, and nuclear factor-κB and the phosphorylation of extracellular signal-regulated protein kinases, the c-Jun N-terminal kinase, and p38, exhibiting anti-inflammatory antiapoptotic effects. Our results also further demonstrate that the proinflammatory cytokines of IL-1ß, IL-6, and TNF-α are promising targets for treatment of cerebral ischemic injury. Although further investigation is required for its development, all of these findings led us to speculate that mulberroside A is a candidate for the treatment of ischemic stroke, which would act as a multifactorial neuroprotectant.


Assuntos
Córtex Cerebral/citologia , Dissacarídeos/farmacologia , Glucose/deficiência , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estilbenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas de Transporte , Caspase 1/metabolismo , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Embrião de Mamíferos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Cytokine ; 56(2): 208-17, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21795064

RESUMO

Immobilization of biomolecules with a variety of biological functions has been a promising method to improve the biocompatibility of biomaterials. However, little is known about their inflammatory property and cytotoxicity, which are both key aspects to most biomaterials designed for tissue engineering applications and in vivo implantation. In this in vitro study, heparin/fibronectin complex (Hep/Fn) was coimmobilized onto titanium surface (HF-Ti), which had been proven to have the properties of both anticoagulation and endothelialization in our previous study. Fourier transform infrared (FTIR) spectroscopy and water contact angle measurement were utilized to determine the surface chemical compositions and physical properties. Toluidine Blue O (TBO) and immunochemistry methods were performed to quantify the surface-immobilized heparin and fibronectin. The early inflammatory responses elicited by pristine Ti and HF-Ti were investigated by proinflammatory cytokine secretion of tumor necrosis factor-alpha (TNF-α) released by attached peritoneal macrophages, monocyte chemoattractant protein-1 (MCP-1) and interleukin-1ß (IL-1ß) released by attached human umbilical vein endothelial cells (ECs), respectively. Scanning electronic microscopy (SEM) and immunofluorescence were employed to investigate the changes in macrophages and ECs morphologies. The incubation period for both cells was 24h and the results showed that HF-Ti revealed a weaker inflammatory response than pristine Ti, which provoked a stronger inflammatory response and higher activation of macrophages. Our data suggest that Hep/Fn coimmobilized biomaterials surface may develop to be a new generation of biomaterials with both biocompatibility and anti-inflammatory properties, especially for used as cardiovascular implants and in tissue engineering applications.


Assuntos
Fibronectinas/química , Heparina/química , Inflamação/induzido quimicamente , Titânio/efeitos adversos , Imunofluorescência , Humanos , Técnicas In Vitro , Macrófagos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química , Fator de Necrose Tumoral alfa/metabolismo
12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 26(1): 105-9, 2009 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-19334566

RESUMO

This experiment was designed to investigate the influence of two biomaterials, titanium oxide (Ti-O) and stainless steel (SS), on the cytokine expression of macrophage, and further, to evaluate their biocompatibility. After being co-cultured with Ti-O and SS for 72 h, the cell number and morphology of macrophages attached on materials were detected by fluorescent microscope and SEM. Nitride oxide (NO) and monocyte chemoattractant protein 1 (MCP-1) released by the macrophages co-cultured with different materials were also examined and compared. We found that the cell number of macrophages attached to Ti-O was smaller than that attached to SS. The levels of NO and MCP-1 released by the macrophages co-cultured with Ti-O were lower when compared with those released by macrophages co-cultured with SS. These results demonstrate that Ti-O has better biocompatibility than does SS.


Assuntos
Quimiocina CCL2/metabolismo , Macrófagos/metabolismo , Teste de Materiais/métodos , Óxido Nítrico/metabolismo , Aço Inoxidável , Titânio , Animais , Materiais Biocompatíveis/farmacologia , Células Cultivadas , Macrófagos/citologia , Masculino , Ratos , Ratos Sprague-Dawley , Aço Inoxidável/farmacologia , Titânio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA