Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
In Vitro Cell Dev Biol Anim ; 59(7): 528-535, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37556024

RESUMO

Thiopental sodium (TPTS) is a barbiturate general anesthetic, while its effects on hypoxia/reoxygenation (H/R)-induced injury are still unclear. This study aimed to investigate whether TPTS exerts protective effects against the H/R-induced osteoblast cell injury and explore the underlying mechanisms. Osteoblast cell injury model was induced by the H/R condition, which was treated with or without TPTS. Cell viability and lactate dehydrogenase (LDH) release were determined by the corresponding commercial kits. The levels of oxidative stress were determined in the experimental groups. Cell apoptosis and Caspase-3 activities were determined by propidium iodide staining and substrate-based assay, respectively. Western blotting and qRT-PCR were performed to measure the mRNA and protein levels, respectively. Treatment with TPTS was able to increase cell viability and reduce LDH release in H/R-induced osteoblasts. Additionally, TPTS regulated oxidative stress in H/R-induced osteoblasts by suppressing malondialdehyde (MDA) and reactive oxygen species (ROS) as well as boosting superoxide dismutase (SOD). TPTS was able to suppress cell apoptosis by suppressing Caspase-3 activity and cleavage. TPTS exerted protective effects against cell injury and apoptosis induced by the H/R conditions, which were associated with its regulation of Akt signaling. Moreover, TPTS induced osteoblast differentiation under the H/R condition. In summary, TPTS attenuates H/R-induced injury in osteoblasts by regulating AKT signaling.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Tiopental , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tiopental/farmacologia , Tiopental/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Hipóxia/metabolismo , Estresse Oxidativo , Apoptose , Hipóxia Celular , Miócitos Cardíacos/metabolismo , Sobrevivência Celular
2.
Food Res Int ; 161: 111861, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192984

RESUMO

Linusorbs (LOs, cyclolinopeptides) are a class of naturally occurring cyclic hydrophobic peptides found in flaxseed oil, whose oxidation states indicate the oxidative stability and bitterness of flaxseed oil. Subjected to 63 °C accelerated oxidation, most Met-containing LOs in cold-pressed flaxseed oil entirely depleted by the 6th day except CLP, and MetO2-containing LOs became the dominant ones. However, no MetO2 form of Trp-containing LOs, such as CLD, CLF and CLG, were detected. Given their oxidative kinetics, methionine sulfoxide (MetO) residue in some LOs was less sensitive toward oxidation in the presence of Trp (Tryptophan) group, and the oxidative stability of Met-containing LOs was CLP < CLB < CLL ≈ CLM < CLO, as compared to MetO-containing LOs: CLD < CLE < CLC < CLF ≈ CLG. When antioxidant was added into cold-pressed flaxseed oil to assess the additives' antioxidant effect, no significant difference was observed on oil oxidative indices in early stage except α-tocopherol, where they vary dramatically in suppressing Met oxidation of LOs: L-AP (L-ascorbyl palmitate) > TBHQ (tert-butyl hydroquinone) > Î³-tocopherol > carnosic acid > α-tocopherol. Besides its ability to suppress oxidation of Trp-containing LOs, L-AP also exhibits superior antioxidant effect on non-Trp-containing LOs due to its amphiphilic property. Due to the prooxidative effects of both α- and γ-tocopherol on LOs that contain Trp, it has been suggested that tocopherols may repair Trp residue on LOs, leading to increased tendency of MetO residues to oxidize. The findings of this research are critical for elucidating the antioxidative mechanism of LOs, which can further lead to the establishment of strategies in suppressing bitter after taste to produce high-quality flaxseed oil.


Assuntos
Antioxidantes , Óleo de Semente do Linho , Antioxidantes/química , Hidroquinonas , Óleo de Semente do Linho/química , Peptídeos Cíclicos , Tocoferóis , Triptofano , alfa-Tocoferol , gama-Tocoferol
3.
Brain Behav ; 12(2): e2466, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35025141

RESUMO

INTRODUCTION: Synaptic N-methyl-d-aspartate receptor subtype 2B(NR2B) is significantly reduced in prefrontal cortex (PFC) in the neurodevelopmental methylazoxymethanol (MAM) model of schizophrenia (SCZ). Recent research has shown that LY395756 can effectively restore NR2B levels and improve cognitive performance in juvenile MAM mice model. However, the underlying mechanisms of these beneficial effects remain unclear. MATERIALS AND METHODS: Juvenile MAM mice model of SCZ is used in our study. Synaptic membrane protein levels were examined by western blotting under different treatment conditions. Interaction of cAMP-response element binding protein (CREB) and the promoter of NR2B was detected by the chromatin immunoprecipitation (ChIP) assay. Further examination of signaling pathway that mediates NR2B expression was also investigated by western blotting. RESULTS: In the PFC of the juvenile MAM mice schizophrenia model, CREB was found to directly bind with the promoter of NR2B. LY395756 activated the phosphorylation of AKT. Phosphorylated AKT subsequently induced the phosphorylation of CREB, and the activated CREB promoted the expression of NR2B. Subsequent experiments showed that the dephosphorylation of CREB induced by protein phosphatase 1 (PP1) can inhibit NR2B levels. Taken together, these findings support that the AKT/CREB signaling pathway is essential for the promoting effect of LY395756 on synaptic NR2B in PFC in juvenile MAM mice SCZ model. CONCLUSIONS: Our investigation has identified a novel mechanism by which LY395756 increases NR2B expression in juvenile MAM mice SCZ model. The AKT/CREB signaling pathway warrants further research as a potential direction for clinical treatment of SCZ.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Esquizofrenia , Aminoácidos Dicarboxílicos , Animais , Compostos Bicíclicos com Pontes , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Acetato de Metilazoximetanol/análogos & derivados , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/induzido quimicamente , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA