Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
BMC Pregnancy Childbirth ; 24(1): 456, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951757

RESUMO

BACKGROUND: TBX6, a member of the T-box gene family, encodes the transcription factor box 6 that is critical for somite segmentation in vertebrates. It is known that the compound heterozygosity of disruptive variants in trans with a common hypomorphic risk haplotype (T-C-A) in the TBX6 gene contribute to 10% of congenital scoliosis (CS) cases. The deletion of chromosome 17q12 is a rare cytogenetic abnormality, which often leads to renal cysts and diabetes mellitus. However, the affected individuals often exhibit clinical heterogeneity and incomplete penetrance. METHODS: We here present a Chinese fetus who was shown to have CS by ultrasound examination at 17 weeks of gestation. Trio whole-exome sequencing (WES) was performed to investigate the underlying genetic defects of the fetus. In vitro functional experiments, including western-blotting and luciferase transactivation assay, were performed to determine the pathogenicity of the novel variant of TBX6. RESULTS: WES revealed the fetus harbored a compound heterozygous variant of c.338_340del (p.Ile113del) and the common hypomorphic risk haplotype of the TBX6 gene. In vitro functional study showed the p.Ile113del variant had no impact on TBX6 expression, but almost led to complete loss of its transcriptional activity. In addition, we identified a 1.85 Mb deletion on 17q12 region in the fetus and the mother. Though there is currently no clinical phenotype associated with this copy number variation in the fetus, it can explain multiple renal cysts in the pregnant woman. CONCLUSIONS: This study is the first to report a Chinese fetus with a single amino acid deletion variant and a T-C-A haplotype of TBX6. The clinical heterogeneity of 17q12 microdeletion poses significant challenges for prenatal genetic counseling. Our results once again suggest the complexity of prenatal genetic diagnosis.


Assuntos
Cromossomos Humanos Par 17 , Haplótipos , Heterozigoto , Proteínas com Domínio T , Humanos , Proteínas com Domínio T/genética , Feminino , Cromossomos Humanos Par 17/genética , Gravidez , Adulto , Deleção Cromossômica , Sequenciamento do Exoma , Deleção de Sequência , Feto/anormalidades , Ultrassonografia Pré-Natal
2.
Phytochemistry ; : 114220, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997099

RESUMO

Fourteen undescribed nitrogenous merosesquiterpenoids, purpurols A-D (1-4) and puraminones A-J (5-14), along with three known related compounds (15-17) were isolated from the sponge Pseudoceratina purpurea collected in the South China Sea. Their structures and absolute configurations were unambiguously elucidated by a combination of spectroscopic data, X-ray diffraction analysis, electronic circular dichroism calculations, and chemical derivatization. Purpurols A-D (1-4) incorporated nitrogenous heterocycles, compounds 1 and 2 feature an unusual benzothiazole ring, while 3 and 4 feature benzoxazole ring. Puraminones A-J (5-14) represent sesquiterpenoid aminoquinones with different amine and amino acid side chains at C-20. Additionally, twenty unreported sesquiterpenoid aminoquinone analogues were obtained through chemical derivatization. It is worth noting that all compounds are featured with unusual rearranged 4,9-friedodrimane subunit. In the bioassays, purpurols A and B showed weak anti-inflammation in zebrafish, as well as some compounds showed activities against tumor cells, therefore, preliminary structure-cytotoxicity relationships are also discussed.

3.
Cancer Lett ; : 217067, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942137

RESUMO

Aberrant expression of G protein-coupled receptor class C group 5 member A (GPRC5A) has been reported in multiple cancers and is closely related to patient prognosis. However, the mechanistic role of GPRC5A in gallbladder cancer (GBC) remains unclear. Here, we determined tumor expression levels of GPRC5A and the molecular mechanisms by which GPRC5A regulates gallbladder cancer metastasis. We found that GPRC5A was significantly upregulated in GBC, correlating with poorer patient survival. Knocking down GPRC5A inhibited GBC cell metastasis both in vitro and in vivo. GRPRC5A knockdown resulted in downregulation of TNS4 expression through the JAK2-STAT3 axis. Clinically, GPRC5A expression positively correlated with TNS4. Finally, STAT3 bound to TNS4's promoter region, inducing its expression. Overall, GPRC5A showed high expression in GBC tissues, associated with poor patient prognosis. Our findings first demonstrate that the GPRC5A-JAK2-STAT3-TNS4 pathway promotes GBC cell metastasis, suggesting potential therapy targets.

4.
Lab Chip ; 24(11): 2999-3014, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38742451

RESUMO

The rapid emergence of anisotropic collagen fibers in the tissue microenvironment is a critical transition point in late-stage breast cancer. Specifically, the fiber orientation facilitates the likelihood of high-speed tumor cell invasion and metastasis, which pose lethal threats to patients. Thus, based on this transition point, one key issue is how to determine and evaluate efficient combination chemotherapy treatments in late-stage cancer. In this study, we designed a collagen microarray chip containing 241 high-throughput microchambers with embedded metastatic breast cancer cell MDA-MB-231-RFP. By utilizing collagen's unique structure and hydromechanical properties, the chip constructed three-dimensional isotropic and anisotropic collagen fiber structures to emulate the tumor cell microenvironment at early and late stages. We injected different chemotherapeutic drugs into its four channels and obtained composite biochemical concentration profiles. Our results demonstrate that anisotropic collagen fibers promote cell proliferation and migration more than isotropic collagen fibers, suggesting that the geometric arrangement of fibers plays an important role in regulating cell behavior. Moreover, the presence of anisotropic collagen fibers may be a potential factor leading to the poor efficacy of combined chemotherapy in late-stage breast cancer. We investigated the efficacy of various chemotherapy drugs using cell proliferation inhibitors paclitaxel and gemcitabine and tumor cell migration inhibitors 7rh and PP2. To ensure the validity of our findings, we followed a systematic approach that involved testing the inhibitory effects of these drugs. According to our results, the drug combinations' effectiveness could be ordered as follows: paclitaxel + gemcitabine > gemcitabine + 7rh > PP2 + paclitaxel > 7rh + PP2. This study shows that the biomimetic chip system not only facilitates the creation of a realistic in vitro model for examining the cell migration mechanism in late-stage breast cancer but also has the potential to function as an effective tool for future chemotherapy assessment and personalized medicine.


Assuntos
Movimento Celular , Proliferação de Células , Colágeno , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Colágeno/química , Colágeno/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Anisotropia , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química
5.
Biosensors (Basel) ; 14(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38785726

RESUMO

Phosphodiesterases (PDEs), a superfamily of enzymes that hydrolyze cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), are recognized as a therapeutic target for various diseases. However, the current screening methods for PDE inhibitors usually experience problems due to complex operations and/or high costs, which are not conducive to drug development in respect of this target. In this study, a new method for screening PDE inhibitors based on GloSensor technology was successfully established and applied, resulting in the discovery of several novel compounds of different structural types with PDE inhibitory activity. Compared with traditional screening methods, this method is low-cost, capable of dynamically detecting changes in substrate concentration in live cells, and can be used to preliminarily determine the type of PDEs affected by the detected active compounds, making it more suitable for high-throughput screening for PDE inhibitors.


Assuntos
Inibidores de Fosfodiesterase , Inibidores de Fosfodiesterase/farmacologia , Humanos , AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Ensaios de Triagem em Larga Escala , Técnicas Biossensoriais , GMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos
6.
Mol Ther Nucleic Acids ; 35(2): 102188, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38665219

RESUMO

[This retracts the article DOI: 10.1016/j.omtn.2020.10.035.].

7.
Nucleic Acids Res ; 52(7): 3654-3666, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38300758

RESUMO

DNA Methylation is a significant epigenetic modification that can modulate chromosome states, but its role in orchestrating chromosome organization has not been well elucidated. Here we systematically assessed the effects of DNA Methylation on chromosome organization with a multi-omics strategy to capture DNA Methylation and high-order chromosome interaction simultaneously on mouse embryonic stem cells with DNA methylation dioxygenase Tet triple knock-out (Tet-TKO). Globally, upon Tet-TKO, we observed weakened compartmentalization, corresponding to decreased methylation differences between CpG island (CGI) rich and poor domains. Tet-TKO could also induce hypermethylation for the CTCF binding peaks in TAD boundaries and chromatin loop anchors. Accordingly, CTCF peak generally weakened upon Tet-TKO, which results in weakened TAD structure and depletion of long-range chromatin loops. Genes that lost enhancer-promoter looping upon Tet-TKO showed DNA hypermethylation in their gene bodies, which may compensate for the disruption of gene expression. We also observed distinct effects of Tet1 and Tet2 on chromatin organization and increased DNA methylation correlation on spatially interacted fragments upon Tet inactivation. Our work showed the broad effects of Tet inactivation and DNA methylation dynamics on chromosome organization.


Assuntos
Cromatina , Ilhas de CpG , Metilação de DNA , Proteínas de Ligação a DNA , Dioxigenases , Proteínas Proto-Oncogênicas , Animais , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases/metabolismo , Dioxigenases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Cromatina/metabolismo , Cromatina/genética , Ilhas de CpG/genética , Células-Tronco Embrionárias Murinas/metabolismo , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Epigênese Genética , Regiões Promotoras Genéticas , Cromossomos/genética
8.
Sci Total Environ ; 914: 169913, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185167

RESUMO

This study investigated the influence of biomass addition on the denitrification performance of iron-carbon wetlands. During long-time operation, the effluent NO3--N concentration of CW-BFe was observed to be the lowest, registering at 0.418 ± 0.167 mg/L, outperforming that of CW-Fe, which recorded 1.467 ± 0.467 mg/L. However, the effluent NH4+-N for CW-BFe increased to 1.465 ± 0.121 mg/L, surpassing CW-Fe's 0.889 ± 0.224 mg/L. Within a typical cycle, when establishing first-order reaction kinetics based on NO3--N concentrations, the introduction of biomass was found to amplify the kinetic constants across various stages in the iron-carbon wetland, ranging between 2.4 and 5.4 times that of CW-Fe. A metagenomic analysis indicated that biomass augments the reduction of NO3--N and NO2--N nitrogen and significantly bolsters the dissimilation nitrate reduction to ammonia pathway. Conversely, it impedes the reduction of N2O, leading to a heightened proportion of 2.715 % in CW-BFe's nitrogen mass balance, a stark contrast to CW-Fe's 0.379 %.


Assuntos
Nitratos , Áreas Alagadas , Desnitrificação , Amônia , Biomassa , Carbono , Ferro , Nitrogênio/análise , Eliminação de Resíduos Líquidos
10.
Int J Biol Macromol ; 254(Pt 2): 127834, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926312

RESUMO

Hirsutella sinensis is the anamorph of Ophiocordyceps sinensis, and its mycelia has been used to effectively treat a variety of hepatobiliary diseases in clinical practice. In the present study, we performed a systematic study on the composition and structure of its polysaccharides, and then employed a TGF-ß1-induced human intrahepatic bile duct epithelial cell-epithelial-mesenchymal transition (HIBEC-EMT) model to investigate their effects on treating primary biliary cholangitis (PBC) based on hepatic bile duct fibrosis. Four polysaccharide fractions were obtained from H. sinensis mycelia by hot-water extraction, DEAE-cellulose column and gradient ethanol precipitation separation. HSWP-1a was an α-(1,4)-D-glucan; HSWP-1b and HSWP-1d mainly consisted of mannoglucans with a backbone composed of 1,4-linked α-D-Glcp and 1,4,6-linked α-D-Manp residues branched at O-6 of the 1,4-linked α-D-Glcp with a 1-linked α-D-Glcp as a side chain; and HSWP-1c mainly contained galactomannoglucans. These polysaccharide fractions protected HIBECs from a TGF-ß1-induced EMT, according to HIBEC morphological changes, cell viability, decreased E-cadherin and ZO-1 expression, and increased vimentin and collagen I expression. Furthermore, the effects of the polysaccharides might be mediated by inhibiting the activation of the TGF-ß/Smad signaling pathway, which attenuated hepatic bile duct fibrosis and potential PBC effects.


Assuntos
Cordyceps , Hepatopatias , Humanos , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Cordyceps/metabolismo , Transição Epitelial-Mesenquimal , Células Epiteliais , Ductos Biliares Intra-Hepáticos/metabolismo , Hepatopatias/metabolismo , Fibrose , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Micélio/metabolismo , Caderinas/metabolismo
11.
Front Med ; 18(1): 109-127, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37721643

RESUMO

Altered three-dimensional architecture of chromatin influences various genomic regulators and subsequent gene expression in human cancer. However, knowledge of the topological rearrangement of genomic hierarchical layers in cancer is largely limited. Here, by taking advantage of in situ Hi-C, RNA-sequencing, and chromatin immunoprecipitation sequencing (ChIP-seq), we investigated structural reorganization and functional changes in chromosomal compartments, topologically associated domains (TADs), and CCCTC binding factor (CTCF)-mediated loops in gallbladder cancer (GBC) tissues and cell lines. We observed that the chromosomal compartment A/B switch was correlated with CTCF binding levels and gene expression changes. Increased inter-TAD interactions with weaker TAD boundaries were identified in cancer cell lines relative to normal controls. Furthermore, the chromatin short loops and cancer unique loops associated with chromatin remodeling and epithelial-mesenchymal transition activation were enriched in cancer compared with their control counterparts. Cancer-specific enhancer-promoter loops, which contain multiple transcription factor binding motifs, acted as a central element to regulate aberrant gene expression. Depletion of individual enhancers in each loop anchor that connects with promoters led to the inhibition of their corresponding gene expressions. Collectively, our data offer the landscape of hierarchical layers of cancer genome and functional alterations that contribute to the development of GBC.

12.
Comput Med Imaging Graph ; 111: 102319, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147798

RESUMO

Image registration plays a crucial role in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), used as a fundamental step for the subsequent diagnosis of benign and malignant tumors. However, the registration process encounters significant challenges due to the substantial intensity changes observed among different time points, resulting from the injection of contrast agents. Furthermore, previous studies have often overlooked the alignment of small structures, such as tumors and vessels. In this work, we propose a novel DCE-MRI registration framework that can effectively align the DCE-MRI time series. Specifically, our DCE-MRI registration framework consists of two steps, i.e., a de-enhancement synthesis step and a coarse-to-fine registration step. In the de-enhancement synthesis step, a disentanglement network separates DCE-MRI images into a content component representing the anatomical structures and a style component indicating the presence or absence of contrast agents. This step generates synthetic images where the contrast agents are removed from the original images, alleviating the negative effects of intensity changes on the subsequent registration process. In the registration step, we utilize a coarse registration network followed by a refined registration network. These two networks facilitate the estimation of both the coarse and refined displacement vector fields (DVFs) in a pairwise and groupwise registration manner, respectively. In addition, to enhance the alignment accuracy for small structures, a voxel-wise constraint is further conducted by assessing the smoothness of the time-intensity curves (TICs). Experimental results on liver DCE-MRI demonstrate that our proposed method outperforms state-of-the-art approaches, offering more robust and accurate alignment results.


Assuntos
Meios de Contraste , Neoplasias , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Fígado/diagnóstico por imagem
13.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059862

RESUMO

AIMS: Microbial enhanced oil recovery (MEOR) is dedicated to enhancing oil recovery by harnessing microbial metabolic activities and their byproducts within reservoir rocks and fluids. Therefore, the investigation of microbial mobility and their extensive distribution within crude oil is of paramount importance in MEOR. While microscale models have been valuable for studying bacterial strain behavior in reservoirs, they are typically limited to 2D representations of porous media, making them inadequate for simulating actual reservoir conditions. Consequently, there is a critical need for 3D models and dependable visualization methods to observe bacterial transport and metabolism within these complex reservoir environments. METHODS AND RESULTS: Bacterial cellulose (bc) is a water-insoluble polysaccharide produced by bacteria that exhibits biocompatibility and biodegradability. It holds significant potential for applications in the field of MEOR as an effective means for selective plugging and spill prevention during oil displacement processes. Conditionally cellulose-producing strain, FY-07-G, with green fluorescent labeling, was engineered for enhanced oil recovery. 3D micro-visualization model was constructed to directly observe the metabolic activities of the target bacterial strain within porous media and to assess the plugging interactions between cellulose and the medium. Additionally, X-ray computed tomography (X-CT) technology was employed for a comprehensive analysis of the transport patterns of the target strain in oil reservoirs with varying permeabilities. The results indicated that FY-07-G, as a microorganism employing biopolymer-based plugging principles to enhance oil recovery, selectively targets and seals regions characterized by lower permeability and smaller pore spaces. CONCLUSIONS: This work provided valuable insights into the transport and metabolic behavior of MEOR strains and tackled the limitation of 2D models in faithfully replicating oil reservoir conditions, offering essential theoretical guidance and insights for the further application of oil-displacing bacterial strains in MEOR processes.


Assuntos
Petróleo , Petróleo/metabolismo , Bactérias/metabolismo , Campos de Petróleo e Gás , Celulose/metabolismo , Tomografia Computadorizada por Raios X
14.
Front Microbiol ; 14: 1230274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901819

RESUMO

Microbial Enhanced Oil Recovery (MEOR) is an option for recovering oil from depleted reservoirs. Numerous field trials of MEOR have confirmed distinct microbial community structure in diverse production wells within the same block. The variance in the reservoir microbial communities, however, remains ambiguously documented. In this study, an 8 m long core microbial flooding simulation device was built on a laboratory scale to study the dynamic changes of the indigenous microbial community structure in the Qizhong Block, Xinjiang oil field. During the MEOR, there was an approximate 34% upswing in oil extraction. Based on the 16S rRNA gene high-throughput sequencing, our results indicated that nutrition was one of the factors affecting the microbial communities in oil reservoirs. After the introduction of nutrients, hydrocarbon oxidizing bacteria became active, followed by the sequential activation of facultative anaerobes and anaerobic fermenting bacteria. This was consistent with the hypothesized succession of a microbial ecological "food chain" in the reservoir, which preliminarily supported the two-step activation theory for reservoir microbes transitioning from aerobic to anaerobic states. Furthermore, metagenomic results indicated that reservoir microorganisms had potential functions of hydrocarbon degradation, gas production and surfactant production. Understanding reservoir microbial communities and improving oil recovery are both aided by this work.

15.
Nat Commun ; 14(1): 6276, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805612

RESUMO

Magnetic liquid metal (LM) soft robots attract considerable attentions because of distinctive immiscibility, deformability and maneuverability. However, conventional LM composites relying on alloying between LM and metallic magnetic powders suffer from diminished magnetism over time and potential safety risk upon leakage of metallic components. Herein, we report a strategy to composite inert and biocompatible iron oxide (Fe3O4) magnetic nanoparticles into eutectic gallium indium LM via reactive wetting mechanism. To address the intrinsic interfacial non-wettability between Fe3O4 and LM, a silver intermediate layer was introduced to fuse with indium component into AgxIny intermetallic compounds, facilitating the anchoring of Fe3O4 nanoparticles inside LM with improved magnetic stability. Subsequently, a miniature soft robot was constructed to perform various controllable deformation and locomotion behaviors under actuation of external magnetic field. Finally, practical feasibility of applying LM soft robot in an ex vivo porcine stomach was validated under in-situ monitoring by endoscope and X-ray imaging.

16.
J Nat Prod ; 86(10): 2342-2347, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37807846

RESUMO

Four new aranotin-type epipolythiodioxopiperazines, graphiumins K-N (1-4), along with four known analogues (5-8), were isolated from the deep-sea-derived fungus Exophiala mesophila MCCC 3A00939. Their structures were elucidated by detailed interpretation of NMR and mass spectrometric data. The absolute configuration of the isolates was deduced by a single-crystal X-ray diffraction analysis and the comparisons of experimental electronic circular dichroism (ECD) data with calculated ECD spectra. Graphiumins K (1) and L (2) exhibited cytotoxic activities against the K562, H69AR, and MDA-MB-231 cancer cells with IC50 values ranging from 2.3 to 5.9 µM.


Assuntos
Antineoplásicos , Antineoplásicos/química , Piperazinas/farmacologia , Fungos/química , Estrutura Molecular
17.
Environ Sci Pollut Res Int ; 30(39): 91140-91157, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37474858

RESUMO

Cancer is a chronic disease that seriously endangers human health, and studies on its association with greenspace have been published. We aimed to systematically review the epidemiological evidence and obtain the best available evidence. PubMed, Web of Science, Embase, and Cochrane Library were used as search databases, the time limit was September 12, 2022, and the cited articles were manually supplemented. Two researchers independently performed literature screening and data extraction. We performed a meta-analysis of data using a normalized difference vegetation index (NDVI) as the greenspace measure, providing hazard ratio (HR) and corresponding 95% CI. After standardization of the data, we used a random effects model for pooling. We also assessed the risk of bias for each study and the quality of each evidence body. We identified 10,108 items and included 14 studies from 11 institutions in eight countries. All studies had a low risk of bias. Quantitative analysis of 13 studies found a beneficial association of greenspace with the mortality of lung cancer (pooled HR [95% CI]=0.965 [0.947, 0.983]) and prostate cancer (HR [95% CI]=0.939 [0.898, 0.980]) based on 0.1-unit NDVI increment and a potential beneficial association with the incidence of prostate, lung, and breast cancer. Greenspace had opposite associations with cancer mortality for urban and rural populations. Indirect comparisons did not find statistically significant differences in the effects of greenspace on different cancer outcomes. The evidence body assessment was considered to be "very low." This review indicated potential beneficial associations between greenspace for lung, prostate, and breast cancer outcomes. However, there was a lack of mediation analysis to explore the underlying mechanism of a causal association. Meanwhile, the interstudy heterogeneity was large. Therefore, future studies should consider more accurate exposure assessment and more comprehensive covariate coverage, while focusing on mediating analysis. PROSPERO: CRD42022361068.


Assuntos
Neoplasias da Mama , Parques Recreativos , Masculino , Humanos , Estudos de Coortes , Causalidade , Modelos de Riscos Proporcionais
18.
Environ Toxicol ; 38(10): 2377-2390, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37449729

RESUMO

OBJECTIVE: Prostate cancer (PCa) severely affects men's health worldwide. The mechanism of methyltransferase-like 3 (METTL3) in affecting PCa development by regulating miR-148a-3p expression via N6-methyladenosine (m6A) modification was investigated. METHODS: METTL3, miR-148a-3p, and thioredoxin interacting protein (TXNIP) levels were determined using RT-qPCR and Western blotting. The m6A modification level of miR-148a-3p was observed by Me-RIP assay. Bioinformatics website predicted miR-148a-3p and TXNIP levels in PCa and their correlation, and the binding site between them was verified by dual-luciferase assay. The proliferation, migration, invasion, and apoptosis of PCa cells were examined by CCK-8 assay, Transwell assay, and flow cytometry. A transplanted tumor model was established in nude mice to observe the tumor growth ability, followed by determination of TXNIP levels in tumor tissues by immunohistochemistry. RESULTS: METTL3 interference restrained the proliferation, migration, and invasion and promoted apoptosis of PCa cells. METTL3 up-regulated miR-148a-3p by promoting the m6A modification of pri-miR-148a-3p in PCa cells. miR-148a-3p overexpression nullified the inhibitory actions of silencing METTL3 on PCa cell growth. miR-148a-3p facilitated PCa cell growth by silencing TXNIP. METTL3 interference inhibited tumor growth by down-regulating miR-148a-3p and up-regulating TXNIP. CONCLUSION: METTL3 promoted miR-148a-3p by mediating the m6A modification of pri-miR-148a-3p, thereby targeting TXNIP, interfering with METTL3 to inhibit the proliferation, migration and invasion of PCa cells, promote apoptosis, and inhibit tumor growth in nude mice.


Assuntos
MicroRNAs , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Camundongos Nus , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Próstata , Proliferação de Células/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Transporte/genética
19.
Chin Med J (Engl) ; 136(18): 2210-2220, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37488674

RESUMO

BACKGROUND: Gallbladder cancer (GBC) is the most common malignant tumor of biliary tract. Isoliquiritigenin (ISL) is a natural compound with chalcone structure extracted from the roots of licorice and other plants. Relevant studies have shown that ISL has a strong anti-tumor ability in various types of tumors. However, the research of ISL against GBC has not been reported, which needs to be further investigated. METHODS: The effects of ISL against GBC cells in vitro and in vivo were characterized by cytotoxicity test, RNA-sequencing, quantitative real-time polymerase chain reaction, reactive oxygen species (ROS) detection, lipid peroxidation detection, ferrous ion detection, glutathione disulphide/glutathione (GSSG/GSH) detection, lentivirus transfection, nude mice tumorigenesis experiment and immunohistochemistry. RESULTS: ISL significantly inhibited the proliferation of GBC cells in vitro . The results of transcriptome sequencing and bioinformatics analysis showed that ferroptosis was the main pathway of ISL inhibiting the proliferation of GBC, and HMOX1 and GPX4 were the key molecules of ISL-induced ferroptosis. Knockdown of HMOX1 or overexpression of GPX4 can reduce the sensitivity of GBC cells to ISL-induced ferroptosis and significantly restore the viability of GBC cells. Moreover, ISL significantly reversed the iron content, ROS level, lipid peroxidation level and GSSG/GSH ratio of GBC cells. Finally, ISL significantly inhibited the growth of GBC in vivo and regulated the ferroptosis of GBC by mediating HMOX1 and GPX4 . CONCLUSION: ISL induced ferroptosis in GBC mainly by activating p62-Keap1-Nrf2-HMOX1 signaling pathway and down-regulating GPX4 in vitro and in vivo . This evidence may provide a new direction for the treatment of GBC.


Assuntos
Carcinoma in Situ , Chalconas , Ferroptose , Neoplasias da Vesícula Biliar , Animais , Camundongos , Chalconas/farmacologia , Neoplasias da Vesícula Biliar/tratamento farmacológico , Neoplasias da Vesícula Biliar/genética , Dissulfeto de Glutationa , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos Nus , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio , Humanos
20.
Fitoterapia ; 170: 105625, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37507054

RESUMO

In present study, five series of 45 nitrogenous stilbenes including 35 new compounds were designed, synthesized, and assayed for cytotoxic activities against two human tumor cell lines (K562 cells and MDA-MB-231 cells) and normal cell line (L-02 cells). Structure-activity relationships showed the introduction of N,N-dimethylamino enhanced the cytotoxicities toward K562 cells and compounds with N-methyl piperazine displayed stronger potency toward MDA-MB-231 cells. Among them, compound NS1i possessed extremely potent cytotoxicity with IC50 values 0.93 µM against K562 cells along with excellent selectivity on normal cell viability. Moreover, in silico target prediction and molecule docking demonstrated quinone reductase 2 may be the potential target for NS1i. In summary, nitrogenous stilbenes afford significant potential for the discovery of new highly efficient anticancer agents and NS1i may serve as a promising lead deserve further investigation.


Assuntos
Antineoplásicos , Estilbenos , Humanos , Estrutura Molecular , Estilbenos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Desenho de Fármacos , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA