RESUMO
N-Glycan-dependent endoplasmic reticulum quality control (ERQC) primarily mediates protein folding, which determines the fate of the polypeptide. Monoglucose residues on N-glycans determine whether the nascent N-glycosylated proteins enter into and escape from the calnexin (CANX)/calreticulin (CALR) cycle, which is a central system of the ERQC. To reveal the impact of ERQC on glycosylation and protein fate, we performed comprehensive quantitative proteomic and glycoproteomic analyses using cells defective in N-glycan-dependent ERQC. Deficiency of MOGS encoding the ER α-glucosidase I, CANX, or/and CALR broadly affected protein expression and glycosylation. Among the altered glycoproteins, the occupancy of oligomannosidic N-glycans was significantly affected. Besides the expected ER stress, proteins and glycoproteins involved in pathways for lysosome and viral infection are differentially changed in those deficient cells. We demonstrated that lysosomal hydrolases were not correctly modified with mannose-6-phosphates on the N-glycans and were directly secreted to the culture medium in N-glycan-dependent ERQC mutant cells. Overall, the CANX/CALR cycle promotes the correct folding of glycosylated peptides and influences the transport of lysosomal hydrolases.
Assuntos
Calnexina , Retículo Endoplasmático , Glicoproteínas , Lisossomos , Polissacarídeos , Proteoma , alfa-Glucosidases , Glicosilação , Retículo Endoplasmático/metabolismo , Polissacarídeos/metabolismo , Calnexina/metabolismo , Calnexina/genética , Lisossomos/metabolismo , Proteoma/metabolismo , Proteoma/análise , Glicoproteínas/metabolismo , Glicoproteínas/genética , alfa-Glucosidases/metabolismo , alfa-Glucosidases/genética , Calreticulina/metabolismo , Calreticulina/genética , Hidrolases/metabolismo , Hidrolases/genética , Humanos , Proteômica/métodos , Dobramento de Proteína , AnimaisRESUMO
PROBLEM: Endometrial immune cells are essential for maintaining homeostasis and the endometrial receptivity to embryo implantation. Understanding regional variations in endometrial immune cell populations is crucial for comprehending normal endometrial function and the pathophysiology of endometrial disorders. Despite previous studies focusing on the overall immune cell composition and function in the endometrium, regional variations in premenopausal women remain unclear. METHOD OF STUDY: Endometrial biopsies were obtained from four regions (anterior, posterior, left lateral, and right lateral) of premenopausal women undergoing hysteroscopy with no abnormalities. A 15-color human endometrial immune cell-focused flow cytometry panel was used for analysis. High-dimensional flow cytometry combined with a clustering algorithm was employed to unravel the complexity of endometrial immune cells. Additionally, multiplex immunofluorescent was performed for further validation. RESULTS: Our findings revealed no significant variation in the distribution and abundance of immune cells across different regions under normal conditions during the proliferative phase. Each region harbored similar immune cell subtypes, indicating a consistent immune microenvironment. However, when comparing normal regions to areas with focal hemorrhage, significant differences were observed. An increase in CD8+ T cells highlights the impact of localized abnormalities on the immune microenvironment. CONCLUSIONS: Our study demonstrates that the endometrial immune cell landscape is consistent across different anatomical regions during the proliferative phase in premenopausal women. This finding has important implications for understanding normal endometrial function and the pathophysiology of endometrial disorders.
Assuntos
Microambiente Celular , Endométrio , Humanos , Feminino , Endométrio/imunologia , Endométrio/patologia , Adulto , Microambiente Celular/imunologia , Citometria de Fluxo , Pré-Menopausa/imunologia , Linfócitos T CD8-Positivos/imunologia , BiópsiaRESUMO
Peripheral CD8+ T cell tolerance is a checkpoint in both autoimmune disease and anti-cancer immunity. Despite its importance, the relationship between tolerance-induced states and other CD8+ T cell differentiation states remains unclear. Using flow cytometric phenotyping, single-cell RNA sequencing (scRNA-seq), and chromatin accessibility profiling, we demonstrated that in vivo peripheral tolerance to a self-antigen triggered a fundamentally distinct differentiation state separate from exhaustion, memory, and functional effector cells but analogous to cells defectively primed against tumors. Tolerant cells diverged early and progressively from effector cells, adopting a transcriptionally and epigenetically distinct state within 60 h of antigen encounter. Breaching tolerance required the synergistic actions of strong T cell receptor (TCR) signaling and inflammation, which cooperatively induced gene modules that enhanced protein translation. Weak TCR signaling during bystander infection failed to breach tolerance due to the uncoupling of effector gene expression from protein translation. Thus, tolerance engages a distinct differentiation trajectory enforced by protein translation defects.
Assuntos
Linfócitos T CD8-Positivos , Diferenciação Celular , Tolerância Imunológica , Biossíntese de Proteínas , Receptores de Antígenos de Linfócitos T , Linfócitos T CD8-Positivos/imunologia , Animais , Diferenciação Celular/imunologia , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Tolerância Imunológica/imunologia , Biossíntese de Proteínas/imunologia , Transdução de Sinais/imunologia , Camundongos Endogâmicos C57BL , Autoantígenos/imunologiaRESUMO
Macrophages are vital tissue components involved in organogenesis, maintaining homeostasis, and responses to disease. Mouse models have significantly improved our understanding of macrophages. Further investigations into the characteristics and development of human macrophages are crucial, considering the substantial anatomical and physiological distinctions between mice and humans. Despite challenges in human macrophage research, recent studies are shedding light on the ontogeny and function of human macrophages. In this opinion, we propose combinations of cutting-edge approaches to examine the diversity, development, niche, and function of human tissue-resident macrophages. These methodologies can facilitate our exploration of human macrophages more efficiently, ideally providing new therapeutic avenues for macrophage-relevant disorders.
Assuntos
Macrófagos , Organogênese , Humanos , Camundongos , Animais , Macrófagos/fisiologia , Homeostase , Modelos Animais de DoençasRESUMO
The immune responses during the initiation and invasion stages of human lung adenocarcinoma (LUAD) development are largely unknown. Here, we generated a single-cell RNA sequencing map to decipher the immune dynamics during human LUAD development. We found that T follicular helper (Tfh)-like cells, germinal center B cells, and dysfunctional CD8+ T cells increase during tumor initiation/invasion and form a tertiary lymphoid structure (TLS) inside the tumor. This TLS starts with an aggregation of CD4+ T cells and the generation of CXCL13-expressing Tfh-like cells, followed by an accumulation of B cells, and then forms a CD4+ T and B cell aggregate. TLS and its associated cells are correlated with better patient survival. Inhibiting TLS formation by Tfh or B cell depletion promotes tumor growth in mouse models. The anti-tumoral effect of the Tfh-dependent TLS is mediated through interleukin-21 (IL-21)-IL-21 receptor signaling. Our study establishes an anti-tumoral role of the Tfh-dependent TLS in the development of LUAD.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Animais , Camundongos , Humanos , Linfócitos T Auxiliares-Indutores , Estruturas Linfoides Terciárias/patologia , Linfócitos T CD8-Positivos/patologiaRESUMO
Successful immunotherapy relies on triggering complex responses involving T cell dynamics in tumors and the periphery. Characterizing these responses remains challenging using static human single-cell atlases or mouse models. To address this, we developed a framework for in vivo tracking of tumor-specific CD8+ T cells over time and at single-cell resolution. Our tools facilitate the modeling of gene program dynamics in the tumor microenvironment (TME) and the tumor-draining lymph node (tdLN). Using this approach, we characterize two modes of anti-programmed cell death protein 1 (PD-1) activity, decoupling induced differentiation of tumor-specific activated precursor cells from conventional type 1 dendritic cell (cDC1)-dependent proliferation and recruitment to the TME. We demonstrate that combining anti-PD-1 therapy with anti-4-1BB agonist enhances the recruitment and proliferation of activated precursors, resulting in tumor control. These data suggest that effective response to anti-PD-1 therapy is dependent on sufficient influx of activated precursor CD8+ cells to the TME and highlight the importance of understanding system-level dynamics in optimizing immunotherapies.
Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Microambiente Tumoral , Animais , Camundongos , Imunoterapia/métodos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Microambiente Tumoral/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Linhagem Celular TumoralRESUMO
BACKGROUND: Colorectal cancer liver metastasis (CRLM) and hepatocellular carcinoma (HCC) are both high incidence tumors in China. In certain poorly differentiated cases they can exhibit comparable imaging and pathological characteristics, which impedes accurate clinical diagnosis. The use of protein-based techniques with tissue slides offers a more precise means to assess pathological changes and has the potential to assist with tumor diagnosis. METHODS: A simple in situ protein digestion protocol was established for protein fingerprint analysis of paraffin-embedded tissue slide samples. Additionally, machine learning techniques were employed to construct predictive models for CRLM and HCC. The accuracy of these models was validated using tissue slides and a clinical database. RESULTS: Analysis of differential protein expression between CRLM and HCC groups reliably identified 977 proteins. Among these, 53 were highly abundant in CRLM samples and 57 were highly abundant in HCC samples. A prediction model based on the expression of six proteins (CD9, GSTA1, KRT20, COL1A2, AKR1C3, and HIST2H2BD) had an area under curve (AUC) of 0.9667. This was further refined to three proteins (CD9, ALDH1A1, and GSTA1) with an AUC of 0.9333. CONCLUSIONS: Tissue slide proteomics can facilitate accurate differentiation between CRLM and HCC. This methodology holds great promise for improving clinical tumor diagnosis and for identifying novel markers for challenging pathological specimens.
Assuntos
Carcinoma Hepatocelular , Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Proteômica , Neoplasias Colorretais/metabolismo , ChinaRESUMO
The pituitary is the master neuroendocrine gland, which regulates body homeostasis. It consists of the anterior pituitary/adenohypophysis harboring hormones producing cells and the posterior pituitary/neurohypophysis, which relays the passage of hormones from the brain to the periphery. It is accepted that the adenohypophysis originates from the oral ectoderm (Rathke's pouch), whereas the neural ectoderm contributes to the neurohypophysis. Single-cell transcriptomics of the zebrafish pituitary showed that cyp26b1-positive astroglial pituicytes of the neurohypophysis and prop1-positive adenohypophyseal progenitors expressed common markers implying lineage relatedness. Genetic tracing identifies that, in contrast to the prevailing dogma, neural plate precursors of zebrafish (her4.3+) and mouse (Sox1+) contribute to both neurohypophyseal and a subset of adenohypophyseal cells. Pituicyte-derived retinoic-acid-degrading enzyme Cyp26b1 fine-tunes differentiation of prop1+ progenitors into hormone-producing cells. These results challenge the notion that adenohypophyseal cells are exclusively derived from non-neural ectoderm and demonstrate that crosstalk between neuro- and adeno-hypophyseal cells affects differentiation of pituitary cells.
Assuntos
Neuro-Hipófise , Camundongos , Animais , Peixe-Zebra , Placa Neural , Ácido Retinoico 4 Hidroxilase , HormôniosRESUMO
Macrophages are heterogeneous and play critical roles in development and disease, but their diversity, function, and specification remain inadequately understood during human development. We generated a single-cell RNA sequencing map of the dynamics of human macrophage specification from PCW 4-26 across 19 tissues. We identified a microglia-like population and a proangiogenic population in 15 macrophage subtypes. Microglia-like cells, molecularly and morphologically similar to microglia in the CNS, are present in the fetal epidermis, testicle, and heart. They are the major immune population in the early epidermis, exhibit a polarized distribution along the dorsal-lateral-ventral axis, and interact with neural crest cells, modulating their differentiation along the melanocyte lineage. Through spatial and differentiation trajectory analysis, we also showed that proangiogenic macrophages are perivascular across fetal organs and likely yolk-sac-derived as microglia. Our study provides a comprehensive map of the heterogeneity and developmental dynamics of human macrophages and unravels their diverse functions during development.
Assuntos
Macrófagos , Humanos , Diferenciação Celular , Linhagem da Célula , Macrófagos/citologia , Microglia , Especificidade de ÓrgãosRESUMO
Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Circular RNAs (circRNAs) have been the focus of numerous studies, and some circRNAs have been linked to the development of multiple malignant tumors, including NSCLC. Nevertheless, the functional role and mechanisms of circRNAs in NSCLC remain largely unknown. The primary objective of this study was to screen the associated circRNA in NSCLC and investigate its mechanism. CircRNA microarray was used to identify circRNAs that were abnormally expressed in NSCLC tissue samples. Expression of hsa_circRNA_0088036 was validated in NSCLC tissues and cell lines after the correlation between hsa_circRNA_0088036 and prognosis was determined. We then used a series of function gain-and-loss assays to determine the role of hsa_circ_0088036 in NSCLC progression. RNA-binding protein immunoprecipitation (RIP), RNA pull-down, and RNA interference assays were used to assess the interaction between hsa_circ_0088036 and miR-1343-3p/Bcl-3 axis. Moreover, mechanistic assays were applied to investigate the involved signaling pathway regulated by the hsa_circ_0088036/miR-1343-3p/Bcl-3 axis. Microarray analysis and reverse transcription polymerase chain reaction confirmed the presence of a circRNA termed hsa_circ 0088036 that was upregulated in NSCLC tissue samples and cell lines and indicated a positive association with patient prognosis. Functionally, hsa_circ_0088036 silencing inhibited proliferative, invasive, and migrative potential of NSCLC cells as well as epithelial-mesenchymal transition (EMT)-related proteins by sponging miR-1343-3p to inhibit Bcl-3. Furthermore, mechanistic experiments demonstrated that hsa_circ_0088036 promoted NSCLC progression by activating the TGFß/Smad3/EMT signaling pathway via miR-1343-3p/Bcl-3 axis. In conclusion, hsa_circ_0088036 functions as an oncogene by targeting the miR-1343-3p/Bcl-3 axis via TGFß/Smad3/EMT signaling pathway.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Fator de Crescimento Transformador beta/genéticaRESUMO
The emerging importance of the Siglec-sialic acid axis in human disease, especially cancer, has necessitated the identification of ligands for Siglecs. Recombinant Siglec-Fc fusion proteins have been widely used as ligand detectors, and also as sialic acid-targeted antibody-like proteins for cancer treatment. However, the heterogenetic properties of the Siglec-Fc fusion proteins prepared from various expression systems have not been fully elucidated. In this study, we selected HEK293 and CHO cells for producing Siglec9-Fc and further evaluated the properties of the products. The protein yield in CHO (8.23 mg/L) was slightly higher than that in HEK293 (7.46 mg/L). The Siglec9-Fc possesses five N-glycosylation sites and one of them is located in its Fc domain, which is important for the quality control of protein production and also the immunogenicity of Siglec-Fc. Our glycol-analysis confirmed that the recombinant protein from HEK293 received more fucosylation, while CHO showed more sialylation. Both products revealed a high dimerization ratio and sialic acid binding activity, which was confirmed by the staining of cancer cell lines and bladder cancer tissue. Finally, our Siglec9-Fc product was used to analyze the potential ligands on cancer cell lines.
RESUMO
Tumor cells can be recognized through tumor surface antigens by immune cells and antibodies, which therefore can be used as drug targets for chimeric antigen receptor-T (CAR-T) therapies and antibody drug conjugates (ADCs). In this study, we aimed to identify novel tumor-specific antigens as targets for more effective and safer CAR-T cell therapies and ADCs. Here, we performed differential expression analysis of pan-cancer data obtained from the Cancer Genome Atlas (TCGA), and then performed a series of conditional screenings including Cox regression analysis, Pearson correlation analysis, and risk-score calculation to find tumor-specific cell membrane genes. A tumor tissue-specific and highly expressed gene set containing 3919 genes from 17 cancer types was obtained. Moreover, the prognostic roles of these genes and the functions of these highly expressed membrane proteins were assessed. Notably, 427, 584, 431 and 578 genes were identified as risk factors for LIHC, KIRC, UCEC, and KIRP, respectively. Functional enrichment analysis indicated that these tumor-specific surface proteins might confer tumor cells the ability to invade and metastasize. Furthermore, correlation analysis displayed that most overexpressed membrane proteins were positively correlated to each other. In addition, 371 target membrane protein-coding genes were sifted out by excluding proteins expressed in normal tissues. Apart from the identification of well-validated genes such as GPC3, MSLN and EGFR in the literature, we further confirmed the differential protein expression of 23 proteins: ADD2, DEF6, DOK3, ENO2, FMNL1, MICALL2, PARVG, PSTPIP1, FERMT1, PLEK2, CD109, GNG4, MAPT, OSBPL3, PLXNA1, ROBO1, SLC16A3, SLC26A6, SRGAP2, and TMEM65 in four types of tumors. In summary, our findings reveal novel tumor-specific antigens, which could be potentially used for next-generation CAR-T cell therapies and ADC discovery.
RESUMO
In lung adenocarcinoma (LUAD), the appearance of morphologically diverse tumor regions, termed histological patterns, is closely associated with disease progression and lymph node metastasis. However, the molecular characteristics of the histological patterns in LUAD and the underlying molecular evolutionary mechanisms between the histological patterns in primary tumors and lymph node metastases are poorly understood. Here, we re-analyzed the large TCGA-LUAD dataset and depicted a comprehensive profiling of the genome and transcriptome across the histological patterns in LUAD. Tumor phylogenetic trajectory analysis suggested that the complex glands is more apt to metastasize to the lymph node. Further deconvolution of the tumor microenvironment demonstrated that the complex glands had a higher infiltration of cancer-associated fibroblasts (CAFs). Single-cell transcriptome profiling of complex glands pattern identified a novel CAF subtype co-expressing fibroblast activation protein-alpha (FAP) and stimulator of interferon genes (STING). Moreover, our data demonstrated that FAP is an important downstream effector of STING in CAFs. In summary, our results provide the basis for the development of innovative therapeutic guidelines and intervention strategies for LUAD patients.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Filogenia , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Metástase Linfática , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microambiente Tumoral/genéticaRESUMO
Professor SHAO Jing-ming's clinical experience of fire needling for bone-joint tuberculosis, tuberculous cervical lymphadenitis, ganglion cyst and thyrophyma is summarized. Professor SHAO used fire needling to treat bone-joint tuberculosis. The acupoints included ashi points and nearby acupoints, particularly local opposite acupoints (Neixiyan [EX-LE 4] and Dubi [ST 35], Yinlingquan [SP 9] and Yanglingquan [GB 34], Xuehai [SP 10] and Liangqiu [ST 34]), and for the patients with severe yin-cold syndrome, Yanghe decoction was additionally used. For tuberculous cervical lymphadenitis, fire needling was used at different stages. In the early stage, the nucleus was punctured with fire needling; in the middle stage, the pustule was punctured with fire needling combined with cupping; in the late stage, the fire needling was inserted into the fistula or sinus tract, and the surrounding granulation tissue was treated with horizontal penetrating needling. For ganglion cyst, fire needling combined with centro-square needling was applied. For thyrophyma, the surrounding needling with filiform was used; for simple thyroid mass and thyroid nodule, the surrounding needling with fire needling was used.
Assuntos
Terapia por Acupuntura , Cistos Glanglionares , Linfadenite , Tuberculose Osteoarticular , Pontos de Acupuntura , HumanosRESUMO
OBJECTIVE: To observe the effect of acupuncture preconditioning combined with PI3K blocker LY294002 on the expression of PI3K and Akt proteins and genes in the lung tissue and the contents of serum IL-12 and IL-13 in asthmatic rats, so as to explore its preprotective mechanism underlying improving asthma. METHODS: Sixty male Wistar rats were randomly divided into blank control, model, acupuncture pretreatment + blank, acupuncture pretreatment, acupuncture pretreatment + LY294002 and LY294002 groups (n=10 in each group). The asthma model was established by intraperitoneal injection of mixture solution of OVA and Al(OH)3 and followed inhalation of 1%OVA for 30 min, once daily for 7 days. Rats of the blocker groups received inhalation of atomized LY294002 solution for 30 min before inhalation of 1% OVA, and acupuncture was applied to "Feishu"(BL13), "Dazhui"(GV14) and "Fengmen"(BL12) for 20 min, once daily for 7 days before modeling. H.E. staining was used to assess histopathological changes of the lung tissue, and ELISA was used to detect the contents of serum IL-12 and IL-13. The immunoactivity of PI3K and Akt and expression of Akt mRNA of the lung tissue were detected by using immunohistochemistry and fluorescence quantitative real-time PCR, separately. RESULTS: Compared with the blank control group, the content of serum IL-12 was significantly decreased (P<0.01), and the content of serum IL-13, the expression levels of PI3K, Akt protein and Akt mRNA were remarkably increased (P<0.01) in the model group. In comparison with the model group, the content of serum IL-12 in the pretreatment, pretreatment + LY294002 and LY294002 groups was significantly increased (P<0.01, P<0.05), while the content of IL-13 and the expression levels of PI3K, Akt protein and Akt mRNA were considerably decreased (P<0.01, P<0.05) in the acupuncture pretreatment, acupuncture pretreatment+LY294002 and LY294002 groups. The therapeutic effect of acupuncture pretreatment+LY294002 was obviously superior to that of simple acupuncture pretreatment and LY294002 (except PI3K and Akt in the LY294002 group) in up-regulating serum IL-12 level, and in down-regulating serum IL-13, and PI3K and Akt protein levels in the lung tissue (P<0.01). H.E. staining showed severe inflammatory factor infiltration in the bronchus and pulmonary interstitium, and obvious bronchial lumen narrowing with increased exudate in rats of the model group, which was relatively milder in rats of the acupuncture pretreatment, acupuncture pretreatment+LY294002 and LY294002 groups. There were no significant diffe-rences between blank control and pretreatment+blank groups in all of the above indicators ï¼P>0.05ï¼. CONCLUSION: Acupuncture preconditioning can inhibit airway inflammation in asthmatic rats, which may be associated with its functions in down-regulating the levels of pulmonary PI3K and Akt and serum IL-13 and up-regulating the content of serum IL-12. Acupuncture preconditioning combined with LY294002 has the best effect.
Assuntos
Terapia por Acupuntura , Asma , Animais , Asma/genética , Asma/metabolismo , Asma/terapia , Cromonas , Inflamação , Interleucina-12/sangue , Interleucina-13/sangue , Masculino , Morfolinas , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro , Ratos , Ratos WistarRESUMO
Macrophages are professional phagocytes with a wide distribution in all tissues throughout the body. Macrophages play a crucial role in homeostasis and numerous physiological processes beyond innate and adaptive immunity, including cellular debris removal, metabolic regulation, tissue repair, and tissue remodeling. Uterine macrophages are a heterogeneous and highly plastic subset of immune cells regulated by the local microenvironment and, in addition to their anti-inflammatory and anti-infective functions, support the establishment and maintenance of pregnancy. Comprehensive reviews have summarized the role of decidual macrophages during pregnancy. However, the distribution of macrophages in the endometrium prior to pregnancy, their functional remodeling, and the knock-on effects on subsequent pregnancies have not been elucidated. In this review, we focus on 1) how the phenotypes of endometrial macrophages and their interactions with other endometrial cells indicate or contribute to the subsequent pregnancy, 2) the adaptive switching of endometrial macrophages during the initial establishment of pregnancy, 3) and the pregnancy complications and pregnancy-related disorders associated with endometrial macrophages.
Assuntos
Decídua , Complicações na Gravidez , Gravidez , Humanos , Feminino , Endométrio , Macrófagos , Complicações na Gravidez/metabolismoRESUMO
[This corrects the article DOI: 10.3389/fonc.2021.629974.].
RESUMO
Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies. Elucidating the underlying mechanisms of this disease could provide new therapeutic strategies for treating HCC. Here, we identified a novel role of DEAD-box helicase 24 (DDX24), a member of the DEAD-box protein family, in promoting HCC progression. DDX24 levels were significantly elevated in HCC tissues and were associated with poor prognosis of HCC. Overexpression of DDX24 promoted HCC migration and proliferation in vitro and in vivo, whereas suppression of DDX24 inhibited both functions. Mechanistically, DDX24 bound the mRNA618-624nt of laminin subunit beta 1 (LAMB1) and increased its stability in a manner dependent upon the interaction between nucleolin and the C-terminal region of DDX24. Moreover, regulatory factor X8 (RFX8) was identified as a DDX24 promoter-binding protein that transcriptionally upregulated DDX24 expression. Collectively, these findings demonstrate that the RFX8/DDX24/LAMB1 axis promotes HCC progression, providing potential therapeutic targets for HCC. SIGNIFICANCE: The identification of a tumor-promoting role of DDX24 and the elucidation of the underlying regulatory mechanism provide potential prognostic indicators and therapeutic approaches to help improve the outcome of patients with hepatocellular carcinoma.
Assuntos
Carcinoma Hepatocelular , RNA Helicases DEAD-box , Laminina , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Laminina/genética , Laminina/metabolismo , Neoplasias Hepáticas/patologia , Prognóstico , Regiões Promotoras GenéticasRESUMO
Glypican-3 (GPC3) has become a compelling target for immunotherapy of hepatocellular carcinoma, including antibody-drug conjugate (ADC), and ADC-like immunotoxin. To investigate the impact of epitopes on the potency of ADCs, current study generated a large panel of chicken monoclonal antibodies (mAbs) that targeted 12 different and over-lapping epitopes on GPC3. These mAbs demonstrated a very high affinity with Kd values in the range of 10-9-10-14 M, and the highest affinity (Kd value of 0.0214 pM) was 40-fold higher than the previously generated high-affinity mAb YP7 (Kd value of 0.876 nM). Additionally, these mAbs exhibited excellent thermostability with Tm values in the range of 45-82 °C. As a proof-of-concept study for ADC, we made immunotoxins (scFv fused with PE24, the 24-kDa cytotoxic domain of Pseudomonas exotoxin A) based on these mAbs, and we found that immunotoxins targeting the N-lobe of GPC3 were overall much more potent than those targeting the C-lobe and other locations. One representative N-lobe-targeting immunotoxin J80A-PE24 demonstrated 3 to 13-fold more potency than the hitherto best immunotoxin HN3-PE24 that was previously developed. J80A-PE24 could suppress tumor growth much greater than HN3-PE24 in a xenograft mouse model. Combination of J80A-PE24 with an angiogenesis inhibitor FGF401 showed additive effect, which dramatically shrank tumor growth. Our work demonstrated that, due to high affinity, excellent thermostability and potency, chicken mAbs targeting the N-lobe of GPC3 are appealing candidates to develop potent ADCs for immunotherapy of liver cancer.
RESUMO
Greenhouse gas (GHG) emissions from constructed wetlands (CWs) lower the environmental and ecological benefits of CWs and thus have raised increasing environmental concern. To prevent GHGs emissions, it is important to assess and quantify the correlation of GHGs emission and microbial carbon and nitrogen transformations. In this study, two typical wetland substrate samples (mud sampled from Xiaomei River CW and sand sampled from Dongwen River CW) were used to build lab-scale vertical subsurface flow CW microcosms, labeled as XRCW and DRCW, respectively. The mean COD removal rate of the DRCW group (76.1%) was higher than that of XRCW group (60.6%). Both groups achieved a high extent of nitrogen nutrient removal, indicating a higher metabolic activity of nitrifying and denitrifying microorganisms in the system, especially in XRCW. The mean emission fluxes of N2O, CH4 and CO2 in the XRCW group were 52.7 µg/m2-h, 1.6 mg/m2-h and 100.4 mg/m2-h, which were higher than that in the DRCW group (30.0 µg/m2-h, 1.0 mg/m2-h and 28.0 mg/m2-h, respectively). The relation of GHG emissions to microbial carbon and nitrogen transformation was assessed by genomics and functional analysis. The release of GHGs by the XRCW group had a positive correlation with the relative abundance of Proteobacteria, while for the DRCW group a positive correlation was found with the relative abundance of Cyanobacteria. Nitrogen fixation by Cyanobacteria could be an approach to reduce GHG emissions. The release of CH4 and CO2 was positively correlated with glucose metabolism. N2O gas emission was affected by the species of denitrifiers. This study is of great importance to clarify the emissions of GHGs in vertical subsurface flow CWs, as it is relating to microbial carbon and nitrogen transformation. The connection is of great significance to control the emission of GHGs in wetlands.