Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1090906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860371

RESUMO

Background: Stomach adenocarcinoma (STAD) is one of the primary contributors to deaths that are due to cancer globally. At the moment, STAD does not have any universally acknowledged biological markers, and its predictive, preventive, and personalized medicine (PPPM) remains sufficient. Oxidative stress can promote cancer by increasing mutagenicity, genomic instability, cell survival, proliferation, and stress resistance pathways. As a direct and indirect result of oncogenic mutations, cancer depends on cellular metabolic reprogramming. However, their roles in STAD remain unclear. Method: 743 STAD samples from GEO and TCGA platforms were selected. Oxidative stress and metabolism-related genes (OMRGs) were acquired from the GeneCard Database. A pan-cancer analysis of 22 OMRGs was first performed. We categorized STAD samples by OMRG mRNA levels. Additionally, we explored the link between oxidative metabolism scores and prognosis, immune checkpoints, immune cell infiltration, and sensitivity to targeted drugs. A series of bioinformatics technologies were employed to further construct the OMRG-based prognostic model and clinical-associated nomogram. Results: We identified 22 OMRGs that could evaluate the prognoses of patients with STAD. Pan-cancer analysis concluded and highlighted the crucial part of OMRGs in the appearance and development of STAD. Subsequently, 743 STAD samples were categorized into three clusters with the enrichment scores being C2 (upregulated) > C3 (normal) > C1 (downregulated). Patients in C2 had the lowest OS rate, while C1 had the opposite. Oxidative metabolic score significantly correlates with immune cells and immune checkpoints. Drug sensitivity results reveal that a more tailored treatment can be designed based on OMRG. The OMRG-based molecular signature and clinical nomogram have good accuracy for predicting the adverse events of patients with STAD. Both transcriptional and translational levels of ANXA5, APOD, and SLC25A15 exhibited significantly higher in STAD samples. Conclusion: The OMRG clusters and risk model accurately predicted prognosis and personalized medicine. Based on this model, high-risk patients might be identified in the early stage so that they can receive specialized care and preventative measures, and choose targeted drug beneficiaries to deliver individualized medical services. Our results showed oxidative metabolism in STAD and led to a new route for improving PPPM for STAD.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Medicina de Precisão , Estresse Oxidativo/genética , Adenocarcinoma/genética , Neoplasias Gástricas/genética
2.
Front Genet ; 13: 951239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186436

RESUMO

Both cuproptosis and necroptosis are typical cell death processes that serve essential regulatory roles in the onset and progression of malignancies, including low-grade glioma (LGG). Nonetheless, there remains a paucity of research on cuproptosis and necroptosis-related gene (CNRG) prognostic signature in patients with LGG. We acquired patient data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) and captured CNRGs from the well-recognized literature. Firstly, we comprehensively summarized the pan-cancer landscape of CNRGs from the perspective of expression traits, prognostic values, mutation profiles, and pathway regulation. Then, we devised a technique for predicting the clinical efficacy of immunotherapy for LGG patients. Non-negative matrix factorization (NMF) defined by CNRGs with prognostic values was performed to generate molecular subtypes (i.e., C1 and C2). C1 subtype is characterized by poor prognosis in terms of disease-specific survival (DSS), progression-free survival (PFS), and overall survival (OS), more patients with G3 and tumour recurrence, high abundance of immunocyte infiltration, high expression of immune checkpoints, and poor response to immunotherapy. LASSO-SVM-random Forest analysis was performed to aid in developing a novel and robust CNRG-based prognostic signature. LGG patients in the TCGA and GEO databases were categorized into the training and test cohorts, respectively. A five-gene signature, including SQSTM1, ZBP1, PLK1, CFLAR, and FADD, for predicting OS of LGG patients was constructed and its predictive reliability was confirmed in both training and test cohorts. In both the training and the test datasets (cohorts), higher risk scores were linked to a lower OS rate. The time-dependent ROC curve proved that the risk score had outstanding prediction efficiency for LGG patients in the training and test cohorts. Univariate and multivariate Cox regression analyses showed the CNRG-based prognostic signature independently functioned as a risk factor for OS in LGG patients. Furthermore, we developed a highly reliable nomogram to facilitate the clinical practice of the CNRG-based prognostic signature (AUC > 0.9). Collectively, our results gave a promising understanding of cuproptosis and necroptosis in LGG, as well as a tailored prediction tool for prognosis and immunotherapeutic responses in patients.

3.
Front Immunol ; 13: 994034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225939

RESUMO

Background: Despite the comparatively low prevalence of osteosarcoma (OS) compared to other cancer types, metastatic OS has a poor overall survival rate of fewer than 30%. Accumulating data has shown the crucial functions of immunogenic cell death (ICD) in various cancers; nevertheless, the relationship between ICD and OS was not previously well understood. This research aims to determine the function of ICD in OS and construct an ICD-based prognostic panel. Methods: Single cell RNA sequencing data from GSE162454 dataset distinguished malignant cells from normal cells in OS. The discrepancy in ICD scores and corresponding gene expression was intensively explored between malignant cells and normal cells. Using the RNA sequencing data of the TARGET-OS, GSE16091, GSE21257, and GSE39058 datasets, the molecular subtype of OS was determined by clustering seventeen ICD-related genes obtained from the literature. Differentially expressed genes (DEGs) between different molecular subtypes were identified to develop a novel ICD-associated prognostic panel. Results: The malignant cells had a remarkable decrease in the ICD scores and corresponding gene expression compared with normal cells. A total of 212 OS patients were successfully stratified into two subtypes: C1 and C2. C1-like OS patients were characterized by better prognostic outcomes, overexpression of ICD genes, activation of the ICD pathway, high inflitration abundance of immunocytes, and low expression levels of immune checkpoint genes (ICGs); however, the reverse is true in C2-like OS patients. Utilizing the limma programme in R, the DEGs between two subtypes were determined, and a 5-gene risk panel consisting of BAMBI, TMCC2, NOX4, DKK1, and CBS was developed through LASSO-Cox regression analysis. The internal- and external-verification cohorts were employed to verify the efficacy and precision of the risk panel. The AUC values of ROC curves indicated excellent prognostic prediction values of our risk panel. Conclusions: Overall, ICD represented a protective factor against OS, and our 5-gene risk panel serving as a biomarker could effectively evaluate the prognostic risk in patients with OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Morte Celular Imunogênica , Osteossarcoma/metabolismo , Prognóstico , Análise de Sequência de RNA
4.
BMC Med Genomics ; 15(1): 156, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831825

RESUMO

Kidney renal clear cell carcinoma (KIRC) is among the major causes of cancer-caused mortality around the world. Transient receptor potential channels (TRPs), due to their role in various human diseases, might become potential drug targets in cancer. The mRNA expression, copy number variation, single-nucleotide variation, prognostic values, drug sensitivity, and pathway regulation of TRPs were studied across cancer types. The ArrayExpress and The Cancer Genome Atlas (TCGA) databases were used to retrieve KIRC samples. Simultaneously, training, internal, and external cohorts were grouped. In KIRC, a prognostic signature with superior survival prediction in contrast with other well-established signatures was created after a stepwise screening of optimized genes linked to TRPs using univariate Cox, weighted gene co-expression network analysis, multivariate Cox, and least absolute shrinkage and selection operator regression analyses. Subsequent to the determination of risk levels, the variations in the expression of immune checkpoint genes, tumor mutation burden, and immune subtypes and response between low-risk and high-risk subgroups were studied using a variety of bioinformatics algorithms, including ESTIMATE, XCELL, EPIC, CIBERSORT-ABS, CIBERSORT, MCPCOUNTER, TIMER, and QUANTISEQ. Gene set enrichment analysis helped in the identification of abnormal pathways across the low- and high-risk subgroups. Besides, high-risk KIRC patients might benefit from ABT888, AZD6244, AZD7762, Bosutinib, Camptothecin, CI1040, JNK inhibitor VIII, KU55933, Lenalidomide, Nilotinib, PLX4720, RO3306, Vinblastine, and ZM.447439; however, low-risk populations might benefit from Bicalutamide, FH535, and OSI906. Finally, calibration curves were used to validate the nomogram with a satisfactory predictive survival probability. In conclusion, this research provides useful insight that can aid and guide clinical practice and scientific research.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Canais de Potencial de Receptor Transitório , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genômica , Humanos , Rim/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Prognóstico , Transcriptoma , Canais de Potencial de Receptor Transitório/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA