Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Int J Med Inform ; 189: 105509, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38851131

RESUMO

BACKGROUND: Predicting early recurrence (ER) of hepatocellular carcinoma (HCC) accurately can guide treatment decisions and further enhance survival. Computed tomography (CT) imaging, analyzed by deep learning (DL) models combining domain knowledge, has been employed for the prediction. However, these DL models utilized late fusion, restricting the interaction between domain knowledge and images during feature extraction, thereby limiting the prediction performance and compromising decision-making interpretability. METHODS: We propose a novel Vision Transformer (ViT)-based DL network, referred to as Dual-Style ViT (DSViT), to augment the interaction between domain knowledge and images and the effective fusion among multi-phase CT images for improving both predictive performance and interpretability. We apply the DSViT to develop pre-/post-operative models for predicting ER. Within DSViT, to balance the utilization between domain knowledge and images within DSViT, we propose an adaptive self-attention mechanism. Moreover, we present an attention-guided supervised learning module for balancing the contributions of multi-phase CT images to prediction and a domain knowledge self-supervision module for enhancing the fusion between domain knowledge and images, thereby further improving predictive performance. Finally, we provide the interpretability of the DSViT decision-making. RESULTS: Experiments on our multi-phase data demonstrate that DSViTs surpass the existing models across multiple performance metrics and provide the decision-making interpretability. Additional validation on a publicly available dataset underscores the generalizability of DSViT. CONCLUSIONS: The proposed DSViT can significantly improve the performance and interpretability of ER prediction, thereby fortifying the trustworthiness of artificial intelligence tool for HCC ER prediction in clinical settings.

2.
Adv Mater ; : e2401667, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843541

RESUMO

The efficacy of adoptive T cell therapy (ACT) for the treatment of solid tumors remains challenging. In addition to the poor infiltration of effector T (Teff) cells limited by the physical barrier surrounding the solid tumor, another major obstacle is the extensive infiltration of regulatory T (Treg) cells, a major immunosuppressive immune cell subset, in the tumor microenvironment. Here, this work develops a grooved microneedle patch for augmenting ACT, aiming to simultaneously overcome physical and immunosuppressive barriers. The microneedles are engineered through an ice-templated method to generate the grooved structure for sufficient T-cell loading. In addition, with the surface modification of chemokine CCL22, the MNs could not only directly deliver tumor-specific T cells into solid tumors through physical penetration, but also specifically divert Treg cells from the tumor microenvironment to the surface of the microneedles via a cytokine concentration gradient, leading to an increase in the ratio of Teff cells/Treg cells in a mouse melanoma model. Consequently, this local delivery strategy of both T cell receptor T cells and chimeric antigen receptor T cells via the CCL22-modified grooved microneedles as a local niche could significantly enhance the antitumor efficacy and reduce the on-target off-tumor toxicity of ACT.

3.
Eur Urol Oncol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38762368

RESUMO

BACKGROUND AND OBJECTIVE: Combinations of immune checkpoint inhibitors and nab-paclitaxel have achieved significant therapeutic effects in the treatment of advanced urothelial carcinoma. Our aim was to assess the efficacy and safety of tislelizumab combined with low-dose nab-paclitaxel in patients with muscle-invasive bladder cancer (MIBC). METHODS: TRUCE-01 was a single-arm phase 2 study that included 62 patients with T2-4a N0/X M0 MIBC tumors with predominant urothelial carcinoma histology. Eligible patients received three 21-d cycles of intravenous 200 mg tislelizumab on day 1 plus intravenous 200 mg nab-paclitaxel on day 2, followed by surgical assessment. The primary study endpoint was a clinical complete response (cCR). Treatment-related adverse event (TRAE) profiles were recorded according to Common Terminology Criteria for Adverse Events version 5.0. KEY FINDINGS AND LIMITATIONS: The safety analysis included all 62 patients and the efficacy analysis included 48 patients. The primary efficacy endpoint (cCR) was met by 25 patients (52%) patients. Among the 62 patients in the safety analysis, six (9.7%) had grade ≥3 TRAEs. CONCLUSIONS: Tislelizumab combined with low-dose nab-paclitaxel showed promising antitumor effectiveness and was generally well tolerated, which makes it an excellent preoperative therapy option for MIBC. PATIENT SUMMARY: We found that a combination of the drugs tislelizumab and low-dose nab-paclitaxel had satisfactory efficacy and safety for preoperative treatment of muscle-invasive bladder cancer.

4.
Physiol Plant ; 176(2): e14293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38641970

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs in eukaryotes. Plant endogenous miRNAs play pivotal roles in regulating plant development and defense responses. MicroRNA394 (miR394) has been reported to regulate plant development, abiotic stresses and defense responses. Previous reports showed that miR394 responded to P. infestans inoculation in potato, indicating that miR394 may be involved in defense responses. In this study, we further investigated its role in potato defense against P. infestans. Stable expression of miR394 in tobacco and potato enhances the susceptibility to P. infestans, which is accompanied with the reduced accumulation of ROS and down-regulation of the PTI (pattern-triggered immunity) marker genes. Besides well-known target StLCR, miR394 also targets StA/N-INVE, which encodes a chloroplast Alkaline/Neutral Invertases (A/N-INVE). Both StLCR and StA/N-INVE positively regulate late blight resistance, while miR394 degrades them. Interestingly, StA/N-INVE is located in the chloroplast, indicating that miR394 may manipulate chloroplast immunity. Degradation of StA/N-INVE may affect the chloroplast function and hence lead to the compromised ROS (reactive oxygen species) burst and reduced retrograde signaling from the chloroplast to the nucleus and cytoplasm. In summary, this study provides new information that miR394 targets and degrades StA/N-INVE and StLCR, which are positive regulators, to enhance potato susceptibility to P. infestans.


Assuntos
MicroRNAs , Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Plantas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Sci Rep ; 14(1): 8985, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637598

RESUMO

This study delves into the potential connections between cardiac oxidative stress, inflammatory cytokine response, cardiac pump function, and prognosis in individuals following myocardial infarction. A total of 276 patients were categorized into two groups: the control group (n = 130) and the observation group (n = 146), based on the drug intervention strategies. The control group received standard drug treatment, while the observation group received early drug intervention targeting antioxidant and anti-inflammatory treatment in addition to standard treatment. Serum levels of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-9 (IL-6), were assessed using enzyme-linked immuno sorbent assay (ELISA) kits. The Forkhead Box Protein A2 (FOX2) reagent was used to determine the overall oxidation level. Left Ventricular End-Diastolic Diameter (LVEDD), Left Ventricular Ejection Fraction (LVEF), and End-Systolic Diameter (ESD) were measured using Doppler ultrasound. The observation group exhibited significantly reduced serum levels of TNF-α, IL-1ß, and IL-6 compared to the control group (P < 0.05). Moreover, the observation group exerted lower total oxidation levels, OSI, EDD, and ESD compared to the control group (P < 0.05), while the LVEF and TAS levels in the observation group were higher than those in the control group (P < 0.05). Remarkably, the observation group experienced a significant reduction in the incidences of reinfarction, heart failure, arrhythmia, and abnormal valve function compared to the control group (P < 0.05). Decreased cardiac pump function and a more unfavorable prognosis were associated with elevated levels of cardiac oxidative stress and inflammatory factors (P < 0.05). Timely intervention with appropriate medications have a crucial effect in decreasing inflammatory marker levels, mitigating oxidative pressure, and enhancing cardiac pumping capacity and overall prognosis.


Assuntos
Citocinas , Infarto do Miocárdio , Humanos , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Volume Sistólico , Interleucina-6/metabolismo , Função Ventricular Esquerda , Infarto do Miocárdio/metabolismo , Prognóstico , Estresse Oxidativo
6.
Nat Mater ; 23(6): 844-853, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38448658

RESUMO

Lymph nodes are crucial organs of the adaptive immune system, orchestrating T cell priming, activation and tolerance. T cell activity and function are highly regulated by lymph nodes, which have a unique structure harbouring distinct cells that work together to detect and respond to pathogen-derived antigens. Here we show that implanted patient-derived freeze-dried lymph nodes loaded with chimeric antigen receptor T cells improve delivery to solid tumours and inhibit tumour recurrence after surgery. Chimeric antigen receptor T cells can be effectively loaded into lyophilized lymph nodes, whose unaltered meshwork and cytokine and chemokine contents promote chimeric antigen receptor T cell viability and activation. In mouse models of cell-line-derived human cervical cancer and patient-derived pancreatic cancer, delivery of chimeric antigen receptor T cells targeting mesothelin via the freeze-dried lymph nodes is more effective in preventing tumour recurrence when compared to hydrogels containing T-cell-supporting cytokines. This tissue-mediated cell delivery strategy holds promise for controlled release of various cells and therapeutics with long-term activity and augmented function.


Assuntos
Liofilização , Linfonodos , Mesotelina , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfonodos/imunologia , Linfócitos T/imunologia , Linfócitos T/citologia , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia
7.
Natl Sci Rev ; 11(4): nwae018, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38440217

RESUMO

The limited infiltration and persistence of chimeric antigen receptor (CAR)-T cells is primarily responsible for their treatment deficits in solid tumors. Here, we present a three-dimensional scaffold, inspired by the physiological process of T-cell proliferation in lymph nodes. This scaffold gathers the function of loading, delivery, activation and expansion for CAR-T cells to enhance their therapeutic effects on solid tumors. This porous device is made from poly(lactic-co-glycolic acid) by a microfluidic technique with the modification of T-cell stimulatory signals, including anti-CD3, anti-CD28 antibodies, as well as cytokines. This scaffold fosters a 50-fold CAR-T cell expansion in vitro and a 15-fold cell expansion in vivo. Particularly, it maintains long-lasting expansion of CAR-T cells for up to 30 days in a cervical tumor model and significantly inhibits the tumor growth. This biomimetic delivery strategy provides a versatile platform of cell delivery and activation for CAR-T cells in treating solid tumors.

8.
ACS Nano ; 18(11): 7825-7836, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38452271

RESUMO

Lipid nanoparticles (LNPs), a nonviral nucleic acid delivery system, have shown vast potential for vaccine development and disease treatment. LNPs assist mRNA to cross physiological barriers such as cell membranes and endosomes/lysosomes, promoting the intracellular presentation of mRNA. However, the endosome escape efficiency and biosafety of currently commercialized LNPs are still unsatisfactory, resulting in underutilization of mRNA. Herein, we report that fluorinated modification of the 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-2000 (PEG-DSPE), termed as FPD, in the LNPs can improve the delivery efficiency of mRNA. FPD accounts for only 1.5% of lipids in LNPs but could mediate a 5-fold and nearly 2-fold enhancement of mRNA expression efficiency in B16F10 tumor cells and primary dendritic cells, respectively. Mechanism studies reveal that FPD promotes the cellular internalization of LNPs as well as endosome escape. In vivo studies substantiate that FPD can augment overall mRNA expression at least 3-fold, either by intravenous or intraperitoneal injection, compared to LNPs prepared with nonfluorinated PEG-lipids at a relatively low mRNA dose. Besides, with the introduction of FPD, mRNA expression in the spleen augmented compared to that of the DMG-PEG commercial formulations. Benefiting from a prudent dosage of fluorine, the fluorinated LNPs display favorable biosafety profiles at cellular and zoological levels.


Assuntos
Lipídeos , Nanopartículas , Polietilenoglicóis , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Lipossomos , Nanopartículas/metabolismo , RNA Interferente Pequeno
9.
Sci Adv ; 10(13): eadk8264, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552011

RESUMO

Although CRISPR-mediated genome editing holds promise for cancer therapy, inadequate tumor targeting and potential off-target side effects hamper its outcomes. In this study, we present a strategy using cryo-shocked lung tumor cells as a CRISPR-Cas9 delivery system for cyclin-dependent kinase 4 (CDK4) gene editing, which initiates synthetic lethal in KRAS-mutant non-small cell lung cancer (NSCLC). By rapidly liquid nitrogen shocking, we effectively eliminate the pathogenicity of tumor cells while preserving their structure and surface receptor activity. This delivery system enables the loaded CRISPR-Cas9 to efficiently target to lung through the capture in pulmonary capillaries and interactions with endothelial cells. In a NSCLC-bearing mouse model, the drug accumulation is increased nearly fourfold in lung, and intratumoral CDK4 expression is substantially down-regulated compared to CRISPR-Cas9 lipofectamine nanoparticles administration. Furthermore, CRISPR-Cas9 editing-mediated CDK4 ablation triggers synthetic lethal in KRAS-mutant NSCLC and prolongs the survival of mice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Sistemas CRISPR-Cas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Técnicas de Transferência de Genes , Mutações Sintéticas Letais , Células Endoteliais , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Edição de Genes , Pulmão
10.
Int J Biol Macromol ; 266(Pt 1): 131169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554899

RESUMO

Autogenous bone transplantation is a prevalent clinical method for addressing bone defects. However, the limited availability of donor bone and the morbidity associated with bone harvesting have propelled the search for suitable bone substitutes. Bio-inspired scaffolds, particularly those fabricated using electron beam melting (EBM) deposition technology, have emerged as a significant advancement in this field. These 3D-printed titanium alloy scaffolds are celebrated for their outstanding biocompatibility and favorable elastic modulus. Thermosensitive chitosan hydrogel, which transitions from liquid to solid at body temperature, serves as a popular carrier in bone tissue engineering. Icariin (ICA), known for its efficacy in promoting osteoblast differentiation from bone marrow mesenchymal stem cells (BMSCs), plays a crucial role in this context. We developed a system combining a 3D-printed titanium alloy with a thermosensitive chitosan hydrogel, capable of local bone regeneration and integration through ICA delivery. Our in vitro findings reveal that this system can gradually release ICA, demonstrating excellent biocompatibility while fostering BMSC proliferation and osteogenic differentiation. Immunohistochemistry and Micro-CT analyses further confirm the effectiveness of the system in accelerating in vivo bone regeneration and enhancing osseointegration. This composite system lays a significant theoretical foundation for advancing local bone regeneration and integration.


Assuntos
Ligas , Diferenciação Celular , Quitosana , Flavonoides , Hidrogéis , Células-Tronco Mesenquimais , Osseointegração , Osteogênese , Impressão Tridimensional , Alicerces Teciduais , Titânio , Quitosana/química , Quitosana/farmacologia , Titânio/química , Osseointegração/efeitos dos fármacos , Ligas/química , Ligas/farmacologia , Alicerces Teciduais/química , Animais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual/métodos
12.
Food Res Int ; 178: 113936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309865

RESUMO

In this study, we aimed to uncover the potential underlying mechanisms of the flavor modulation of Chinese bacon by Staphylococcus. To that end, taste-enhancing S. cohnii WX-M8 and S. saprophyticus MY-A10 screened from Chinese bacon were used to investigate the effects of their individual and mixed fermentations and their synergistic fermentation with Lactobacillus plantarum BL-1 on the sensorial attributes, physicochemical properties, microbial diversity, and volatile compounds (VOCs) of Chinese bacon. Our results revealed that S. cohnii WX-M8 and S. saprophyticus MY-A10 significantly increased a* (redness) and Aw and reduced thiobarbituric acid reactive substances (TBARS) when fermented in a mixture. Moreover, they promoted the formation of esters, aldehydes (especially straight-chain aldehydes), and phenolic compounds through pathways related to amino acid metabolism, enhancing sensorial attributes. While synergistic fermentation with L. plantarum BL-1 resulted in an improved a* (redness) of Chinese bacon, and the increased microbial metabolism of the carbohydrate and lipid metabolic pathways, the increase in TBARS and the higher content of acidic volatiles, led to a change in the composition of the flavor substances. The advantage of co-fermentation of Staphylococci in sensory attributes can be attributed to their capability to metabolize amino acids and associates. These findings provide insights into the role of Staphylococcus as a starter in regulating bacon flavor.


Assuntos
Benzenoacetamidas , Microbiologia de Alimentos , Piperidonas , Carne de Porco , Staphylococcus/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Aminoácidos/metabolismo
13.
Cancer Cell ; 42(3): 413-428.e7, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38402609

RESUMO

KRASG12C inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRASG12C-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRASG12C and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRASG12C and KrasG12D lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.


Assuntos
Acetonitrilas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Piperazinas , Pirimidinas , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas p21(ras) , Genes ras , Mutação
14.
Quant Imaging Med Surg ; 14(2): 1835-1843, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415129

RESUMO

Background: Asymptomatic neurocognitive impairment (ANI) is the mildest form of human immunodeficiency virus (HIV)-associated neurocognitive disorders (HANDs), and functional connectivity strength (FCS) alternations have been observed in the ANI stage. However, it is not clear whether the FCS alterations are influenced by the anatomical distance. This study sought to investigate distance-specific FCS changes in HIV ANI patients. Methods: In total, 29 patients with HAND and 32 healthy controls (HCs) were enrolled in the study. Between-group differences were detected for short, middle and long range anatomical distance FCS. A correlation analysis was performed to examine the relationship between distance-specific FCS and immunological parameters and neuropsychological tests. A receiver operating characteristic (ROC) analysis was conducted to examine the discriminative performance for HIV ANI patients. Results: In comparison to the HCs, the HAND patients showed increased short-range FCS in the left inferior parietal lobule (IPL), middle-range FCS in the superior temporal gyrus (STG), long-range FCS in the left precuneus (PCC), and decreased FCS in the right postcentral gyrus (PCG) (cluster P<0.05, voxel significance P<0.001). Further, the long-range FCS in the right PCG was negatively correlated with the CD4/CD8 ratio (r=-0.479, 95% confidence interval (CI): -0.735 to -0.104, P=0.015), and the distance-specific FCS also showed good classification performance between the HAND patients and HCs. The left IPL, left STG, right PCG, and left PCC had areas under the curve (AUCs) of 0.875 [95% confidence interval (CI): 0.758-0.949, P<0.0001], 0.806 (95% CI: 0.677-0.900, P<0.0001), 0.855 (95% CI: 0.734-0.935, P<0.0001), and 0.852 (95% CI: 0.754-0.950, P<0.0001), respectively. There was no significant relationship between the distance-specific FCS and the neuropsychological tests. Conclusions: Distance-specific FCS could be used to examine subtle alternations in HIV-infected patients in the ANI stage and help to explain the possible neurophysiological mechanism of HAND.

15.
Curr Med Imaging ; 20: 1-11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389371

RESUMO

BACKGROUND: The prediction power of MRI radiomics for microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) remains uncertain. OBJECTIVE: To investigate the prediction performance of MRI radiomics for MVI in HCC. METHODS: Original studies focusing on preoperative prediction performance of MRI radiomics for MVI in HCC, were systematically searched from databases of PubMed, Embase, Web of Science and Cochrane Library. Radiomics quality score (RQS) and risk of bias of involved studies were evaluated. Meta-analysis was carried out to demonstrate the value of MRI radiomics for MVI prediction in HCC. Influencing factors of the prediction performance of MRI radiomics were identified by subgroup analyses. RESULTS: 13 studies classified as type 2a or above according to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis statement were eligible for this systematic review and meta-analysis. The studies achieved an average RQS of 14 (ranging from 11 to 17), accounting for 38.9% of the total points. MRI radiomics achieved a pooled sensitivity of 0.82 (95%CI: 0.78 - 0.86), specificity of 0.79 (95%CI: 0.76 - 0.83) and area under the summary receiver operator characteristic curve (AUC) of 0.88 (95%CI: 0.84 - 0.91) to predict MVI in HCC. Radiomics models combined with clinical features achieved superior performances compared to models without the combination (AUC: 0.90 vs 0.85, P < 0.05). CONCLUSION: MRI radiomics has the potential for preoperative prediction of MVI in HCC. Further studies with high methodological quality should be designed to improve the reliability and reproducibility of the radiomics models for clinical application. The systematic review and meta-analysis was registered prospectively in the International Prospective Register of Systematic Reviews (No. CRD42022333822).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Radiômica , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética
16.
Quant Imaging Med Surg ; 14(1): 1039-1060, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223121

RESUMO

Tuberculosis (TB) remains one of the major infectious diseases in the world with a high incidence rate. Drug-resistant tuberculosis (DR-TB) is a key and difficult challenge in the prevention and treatment of TB. Early, rapid, and accurate diagnosis of DR-TB is essential for selecting appropriate and personalized treatment and is an important means of reducing disease transmission and mortality. In recent years, imaging diagnosis of DR-TB has developed rapidly, but there is a lack of consistent understanding. To this end, the Infectious Disease Imaging Group, Infectious Disease Branch, Chinese Research Hospital Association; Infectious Diseases Group of Chinese Medical Association of Radiology; Digital Health Committee of China Association for the Promotion of Science and Technology Industrialization, and other organizations, formed a group of TB experts across China. The conglomerate then considered the Chinese and international diagnosis and treatment status of DR-TB, China's clinical practice, and evidence-based medicine on the methodological requirements of guidelines and standards. After repeated discussion, the expert consensus of imaging diagnosis of DR-PB was proposed. This consensus includes clinical diagnosis and classification of DR-TB, selection of etiology and imaging examination [mainly X-ray and computed tomography (CT)], imaging manifestations, diagnosis, and differential diagnosis. This expert consensus is expected to improve the understanding of the imaging changes of DR-TB, as a starting point for timely detection of suspected DR-TB patients, and can effectively improve the efficiency of clinical diagnosis and achieve the purpose of early diagnosis and treatment of DR-TB.

17.
Biomaterials ; 305: 122463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232643

RESUMO

The tumor microenvironment (TME), which is mostly composed of tumor cells, immune cells, signaling molecules, stromal tissue, and the vascular system, is an integrated system that is conducive to the formation of tumors. TME heterogeneity makes the response to immunotherapy different in different tumors, such as "immune-cold" and "immune-hot" tumors. Tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells are the major suppressive immune cells and their different phenotypes interact and influence cancer cells by secreting different signaling factors, thus playing a key role in the formation of the TME as well as in the initiation, growth, and metastasis of cancer cells. Nanotechnology development has facilitated overcoming the obstacles that limit the further development of conventional immunotherapy, such as toxic side effects and lack of targeting. In this review, we focus on the role of three major suppressive immune cells in the TME as well as in tumor development, clinical trials of different drugs targeting immune cells, and different attempts to combine drugs with nanomaterials. The aim is to reveal the relationship between immunotherapy, immunosuppressive TME and nanomedicine, thus laying the foundation for further development of immunotherapy.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Microambiente Tumoral , Imunoterapia , Neoplasias/tratamento farmacológico , Nanomedicina
18.
Eur J Med Chem ; 266: 116134, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266552

RESUMO

PURPOSE: Claudin 18.2 (CLDN18.2), due to its highly selective expression in tumor cells, has made breakthrough progress in clinical research and is expected to be integrated into routine tumor diagnosis and treatment. METHODS: In this research, we obtained an scFv-Fc fusion protein (SF106) targeting CLDN18.2 through hybridoma technology. The scFv-Fc fusion protein was labeled with radioactive isotopes (124I and 177Lu) to generate the radio-probes. The targeting and specificity of the radio-probes were tested in cellular models, and its diagnostic and therapeutic potential was further evaluated in tumor-bearing models. RESULTS: The molecular probes [124I]I-SF106 and [177Lu]Lu-DOTA-SF106 possess high radiochemical purity (RCP, 98.18 ± 0.93 % and 97.05 ± 1.1 %) and exhibit good stability in phosphate buffer saline and 5 % human serum albumin (92.44 ± 4.68 % and 91.03 ± 2.42 % at 120 h). [124I]I-SF106 uptake in cells expressing CLDN18.2 was well targeted and specific, and the dissociation constant was 17.74 nM [124I]I-SF106 micro-PET imaging showed that the maximum standardized uptake value (SUVmax) was significantly higher than CLDN18.2-negative tumors (1.83 ± 0.02 vs. 1.23 ± 0.04, p < 0.001). The maximum uptake was attained in tumors expressing CLDN18.2 at 48 h after injection. [124I]I-SF106 and [177Lu]Lu-DOTA-SF106 dosimetric study showed that the effective dose in humans complies with the medical safety standards required for their clinical application. The results of treatment experiments showed that 3 MBq of [177Lu]Lu-DOTA-SF106 in CLDN18.2-expressing tumor-bearing mice could significantly inhibit tumor growth. CONCLUSION: These results indicate that radionuclide-labeled scFv-Fc molecular probes ([124I]I-SF106 and [177Lu]Lu-DOTA-SF106) provide a new possibility for the diagnosis and treatment of CLDN18.2-positive cancer patients in clinical practice.


Assuntos
Neoplasias , Compostos Radiofarmacêuticos , Humanos , Camundongos , Animais , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Albumina Sérica Humana , Radioisótopos do Iodo , Sondas Moleculares , Linhagem Celular Tumoral , Claudinas
19.
Eur J Nucl Med Mol Imaging ; 51(5): 1221-1232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38062170

RESUMO

PURPOSE: Gastric cancer (GC), one of the most prevalent and deadliest tumors worldwide, is often diagnosed at an advanced stage with limited treatment options and poor prognosis. The development of a CLDN18.2-targeted radioimmunotherapy probe is a potential treatment option for GC. METHODS: The CLDN18.2 antibody TST001 (provided by Transcenta) was conjugated with DOTA and radiolabeled with the radioactive nuclide 177Lu. The specificity and targeting ability were evaluated by cell uptake, imaging and biodistribution experiments. In BGC823CLDN18.2/AGSCLDN18.2 mouse models, the efficacy of [177Lu]Lu-TST001 against CLDN18.2-expressing tumors was demonstrated, and toxicity was evaluated by H&E staining and blood sample testing. RESULTS: [177Lu]Lu-TST001 was labeled with an 99.17%±0.32 radiochemical purity, an 18.50 ± 1.27 MBq/nmol specific activity and a stability of ≥ 94% after 7 days. It exhibited specific and high tumor uptake in CLDN18.2-positive xenografts of GC mouse models. Survival studies in BGC823CLDN18.2 and AGSCLDN18.2 tumor-bearing mouse models indicated that a low dose of 5.55 MBq and a high dose of 11.10 MBq [177Lu]Lu-TST001 significantly inhibited tumor growth compared to the saline control group, with the 11.1 MBq group showing better therapeutic efficacy. Histological staining with hematoxylin and eosin (H&E) and Ki67 immunohistochemistry of residual tissues confirmed tumor tissue destruction and reduced tumor cell proliferation following treatment. H&E showed that there was no significant short-term toxicity observed in the heart, spleen, stomach or other important organs when treated with a high dose of [177Lu]Lu-TST001, and no apparent hematotoxicity or liver toxicity was observed. CONCLUSION: In preclinical studies, [177Lu]Lu-TST001 demonstrated significant antitumor efficacy with acceptable toxicity. It exhibits strong potential for clinical translation, providing a new promising treatment option for CLDN18.2-overexpressing tumors, including GC.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Radioimunoterapia/métodos , Xenoenxertos , Neoplasias Gástricas/radioterapia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Lutécio/uso terapêutico , Claudinas
20.
Bioact Mater ; 33: 377-395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059121

RESUMO

Chimeric antigen receptor T cell denoted as CAR-T therapy has realized incredible therapeutic advancements for B cell malignancy treatment. However, its therapeutic validity has yet to be successfully achieved in solid tumors. Different from hematological cancers, solid tumors are characterized by dysregulated blood vessels, dense extracellular matrix, and filled with immunosuppressive signals, which together result in CAR-T cells' insufficient infiltration and rapid dysfunction. The insufficient recognition of tumor cells and tumor heterogeneity eventually causes cancer reoccurrences. In addition, CAR-T therapy also raises safety concerns, including potential cytokine release storm, on-target/off-tumor toxicities, and neuro-system side effects. Here we comprehensively review various targeting aspects, including CAR-T cell design, tumor modulation, and delivery strategy. We believe it is essential to rationally design a combinatory CAR-T therapy via constructing optimized CAR-T cells, directly manipulating tumor tissue microenvironments, and selecting the most suitable delivery strategy to achieve the optimal outcome in both safety and efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA