Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Clin Lung Cancer ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39232916

RESUMO

BACKGROUND: Recent advancements in magnetic resonance imaging (MRI) for staging have highlighted the critical question of the need for prophylactic cranial irradiation (PCI) in managing early to mid-stage small cell lung cancer (SCLC). This study assesses the impact of PCI on overall survival (OS) and intracranial control among patients with stage I-IIB SCLC. METHODS: Data from 148 stage I-IIB SCLC patients treated with thoracic radiation therapy (TRT) at two centers were examined. Patients were categorized based on PCI administration: 63 received PCI, while 85 did not. All underwent pretreatment MRI, achieving at least a partial response to therapy. A 1:1 propensity score matching analysis corrected for potential biases. RESULTS: Propensity scores were generated to 116 patients, considering patient demographics, disease progression, and treatment methods. Death was included as a competing risk. The 3-year brain metastases (BM) occurrence rate was significantly higher in patients who did not receive PCI (30.0%) compared to those who did (14.8%), however, the difference was not statistically significant (No PCI vs. PCI, hazard ratio [HR]: 2.08, 95% CI [0.93-4.55], P = .07). No significant effect of PCI on OS was observed [PCI vs. No PCI, HR: 0.80, 95% CI (0.45-1.43), P = .45]. A subgroup analysis of stage IIB patients showed a significant increase in BM risk and mortality for those not receiving PCI (No PCI vs. PCI, BM risk HR: 5.85, 95% CI: 1.83-18.87, P = .003; mortality HR: 2.78, 95% CI: 1.14-6.67, P = .02), with less pronounced effects in stages I-IIA. CONCLUSION: With modern MRI-based screening, PCI may markedly benefit stage IIB SCLC patients by reducing BM and improving OS after initial sensitive treatment. This benefit does not appear to extend to stage I-IIA patients.

2.
World J Psychiatry ; 14(7): 1027-1033, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39050209

RESUMO

BACKGROUND: Delirium is a neuropsychiatric syndrome characterized by acute disturbances of consciousness with rapid onset, rapid progression, obvious fluctuations, and preventable, reversible, and other characteristics. Patients with delirium in the intensive care unit (ICU) are often missed or misdiagnosed and do not receive adequate attention. AIM: To analyze the risk factors for delirium in ICU patients and explore the application of emotional nursing with pain nursing in the management of delirium. METHODS: General data of 301 critically ill patients were retrospectively collected, including histories (cardiovascular and cerebrovascular diseases, hypertension, smoking, alcoholism, and diabetes), age, sex, diagnosis, whether surgery was performed, and patient origin (emergency/clinic). Additionally, the duration of sedation, Richmond Agitation Sedation Scale score, combined emotional and pain care, ventilator use duration, vasoactive drug use, drainage tube retention, ICU stay duration, C-reactive protein, procalcitonin, white blood cell count, body temperature, Acute Physiology and Chronic Health Evaluation II (APACHE II) score, and Sequential Organ Failure Assessment score were recorded within 24 h after ICU admission. Patients were assessed for delirium according to confusion assessment method for the ICU, and univariate and multivariate logistic regression analyses were performed to identify the risk factors for delirium in the patients. RESULTS: Univariate logistic regression analysis was performed on the 24 potential risk factors associated with delirium in ICU patients. The results showed that 16 risk factors were closely related to delirium, including combined emotional and pain care, history of diabetes, and patient origin. Multivariate logistic regression analysis revealed that no combined emotional and pain care, history of diabetes, emergency source, surgery, long stay in the ICU, smoking history, and high APACHE II score were independent risk factors for delirium in ICU patients. CONCLUSION: Patients with diabetes and/or smoking history, postoperative patients, patients with a high APACHE II score, and those with emergency ICU admission need emotional and pain care, flexible visiting modes, and early intervention to reduce delirium incidence.

3.
Langmuir ; 40(31): 16615-16634, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39052933

RESUMO

This study prepared new helmet-roled molecules (HMs) carrying metronidazole frameworks and a phenyl ring for strengthening adsorption and anticorrosion on mild steel. The adsorption of the HMs on the copper surface was understood by material simulation computation. Furthermore, the surface analysis experiments suggest that the studied molecules could be adsorbed to a mild steel surface through the chemical coordination bonding. The remarkable corrosion resistance of the HMs for mild steel in HCl was surveyed by potentiodynamic polarization and electrochemical impedance spectroscopy at 298 K. The HMs including two metronidazole skeletons displayed the stronger corrosion inhibition effect on mild steel than the HM1 bearing one single metronidazole part (the corrosion inhibition efficiency, HM3, 98.03%, HM2, 95.14%, HM1, 88.72%). The results presented in this study provided an efficient strategy to develop new clinical medicine-based corrosion inhibitors for metal in acid medium through molecular preconstruction.

4.
Inflammation ; 47(4): 1328-1343, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38630167

RESUMO

Innate immune response is the first line of defense for the host against virus invasion. One important response is the synthesis and secretion of type I interferon (IFN-I) in the virus-infected host cells. Here, we found that respiratory syncytial virus (RSV) infection induced high expression of TRIM25, which belongs to the tripartite motif-containing (TRIM) family of proteins. TRIM25 bound and activated retinoic acid-inducible gene I (RIG-I) by K63-linked ubiquitination. Accordingly, RIG-I mediated the production of IFN-I mainly through the nuclear factor kappa-B (NF-κB) pathway in respiratory epithelial cells. Interestingly, IFN-I, in turn, promoted a high expression of TRIM38 which downregulated the expression of IFN-I by reducing the protein level of RIG-I by K48-linked ubiquitination. More importantly, the binding site of TRIM25 to RIG-I was found in the narrow 25th-43rd amino acid (aa) region of RIG-I N-terminus. In contrast, the binding sites of TRIM38 to RIG-I were found in a much wider amino acid region, which included the binding site of TRIM25 on RIG-I. As a result, TRIM38 inhibits the production of IFN-I by competing with TRIM25 for RIG-I binding. Thus, TRIM38 negatively regulates RIG-I activation to, in turn, downregulate IFN-I expression, thus interfering with host immune response. A negative feedback loop effectively "puts the brakes" on the reaction once host immune response is overactivated and homeostasis is unbalanced. We also discovered that TRIM25 bound RIG-I by a new K63-linked ubiquitination located at K-45 of the first caspase recruitment domain (CARD). Collectively, these results confirm an antagonism between TRIM38 and TRIM25 in regulating IFN-I production by affecting RIG-I activity following RNA virus infection.


Assuntos
Proteína DEAD-box 58 , Regulação para Baixo , Interferon Tipo I , Receptores Imunológicos , Fatores de Transcrição , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas com Motivo Tripartido/metabolismo , Proteína DEAD-box 58/metabolismo , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/biossíntese , Fatores de Transcrição/metabolismo , Receptores Imunológicos/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Ligação Proteica , Células A549 , Vírus Sinciciais Respiratórios/imunologia
5.
Transl Lung Cancer Res ; 13(3): 512-525, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38601445

RESUMO

Background: Genome-wide association studies (GWASs) explain the genetic susceptibility between diseases and common variants. Nevertheless, with the appearance of large-scale sequencing profiles, we could explore the rare coding variants in disease pathogenesis. Methods: We estimated the genetic correlation of nine respiratory diseases and lung cancer in the UK Biobank (UKB) by linkage disequilibrium score regression (LDSC). Then, we performed exome-wide association studies at single-variant level and gene-level for lung cancer and lung cancer-related respiratory diseases using the whole-exome sequencing (WES) data of 427,934 European participants. Cross-trait meta-analysis was conducted by association analysis based on subsets (ASSET) to identify the pleiotropic variants, while in-silico functional analysis was performed to explore their function. Causal mediation analysis was used to explore whether these pleiotropic variants lead to lung cancer is mediated by affecting the chronic respiratory diseases. Results: Five respiratory diseases [emphysema, pneumonia, asthma, chronic obstructive pulmonary disease (COPD), and fibrosis] were genetically correlated with lung cancer. We identified 102 significant independent variants at single-variant levels for lung cancer and five lung cancer-related diseases. 15:78590583:G>A (missense variant in CHRNA5) was shared in lung cancer, emphysema, and COPD. Meanwhile, 14 significant genes and 87 suggestive genes were identified in gene-based association tests, including HSD3B7 (lung cancer), SRSF2 (pneumonia), TNXB (asthma), TERT (fibrosis), MOSPD3 (emphysema). Based on the cross-trait meta-analysis, we detected 145 independent pleiotropic variants. We further identified abundant pathways with significant enrichment effects, demonstrating that these pleiotropic genes were functional. Meanwhile, the proportion of mediation effects of these variants ranged from 6 to 23 (emphysema: 23%; COPD: 20%; pneumonia: 20%; fibrosis: 7%; asthma: 6%) through these five respiratory diseases to the incidence of lung cancer. Conclusions: The identified shared genetic variants, genes, biological pathways, and potential intermediate causal pathways provide a basis for further exploration of the relationship between lung cancer and respiratory diseases.

6.
Chempluschem ; 89(7): e202300778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38441412

RESUMO

A series of KF/Mg-Fe oxides were fabricated via the solid-state reaction between KF and Mg-Fe oxides. Especially, when 20 wt % KF was supported on the Mg-Fe bi-metal oxides and calcined at 400-600 °C, the solid material with more basic sites than the support itself was obtained. When applied as catalyst to dimethyl carbonate (DMC) synthesis through transesterification of ethylene carbonate (EC) and methanol, this material can afforded up to 88 % yield and 97 % selectivity toward DMC in 2 h under reflux conditions with the molar ratio of methanol to ethylene carbonate set at 8. It is worth noting that the catalyst was easily separated and reused, retaining at least 89 % catalytic activity during the first four recycles. Although an attenuated activity was still observed due to the inevitable filtration loss and dissolution, this solid base can still provide clues to the development recyclable catalyst in green synthesis of DMC.

7.
ChemSusChem ; 17(14): e202400090, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38426643

RESUMO

Designing earth-abundant metal complexes as efficient molecular photocatalysts for visible light-driven CO2 reduction is a key challenge in artificial photosynthesis. Here, we demonstrated the first example of a mononuclear iron pyridine-thiolate complex that functions both as a photosensitizer and catalyst for CO2 reduction. This single-component bifunctional molecular photocatalyst efficiently reduced CO2 to formate and CO with a total turnover number (TON) of 46 and turnover frequency (TOF) of 11.5 h-1 in 4 h under visible light irradiation. Notably, the quantum yield was determined to be 8.4 % for the generation of formate and CO at 400 nm. Quenching experiments indicate that high photocatalytic activity is mainly attributed to the rapid intramolecular quenching protocol. The mechanism investigation by DFT calculation and electrochemical studies revealed that the protonation of Febpy(pyS)2 is indispensable step for photocatalytic CO2 reduction.

9.
iScience ; 27(2): 108985, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38333712

RESUMO

Plasma proteins are promising biomarkers and potential drug targets in lung cancer. To evaluate the causal association between plasma proteins and lung cancer, we performed proteome-wide Mendelian randomization meta-analysis (PW-MR-meta) based on lung cancer genome-wide association studies (GWASs), protein quantitative trait loci (pQTLs) of 4,719 plasma proteins in deCODE and 4,775 in Fenland. Further, causal-protein risk score (CPRS) was developed based on causal proteins and validated in the UK Biobank. 270 plasma proteins were identified using PW-MR meta-analysis, including 39 robust causal proteins (both FDR-q < 0.05) and 78 moderate causal proteins (FDR-q < 0.05 in one and p < 0.05 in another). The CPRS had satisfactory performance in risk stratification for lung cancer (top 10% CPRS:Hazard ratio (HR) (95%CI):4.33(2.65-7.06)). The CPRS [AUC (95%CI): 65.93 (62.91-68.78)] outperformed the traditional polygenic risk score (PRS) [AUC (95%CI): 55.71(52.67-58.59)]. Our findings offer further insight into the genetic architecture of plasma proteins for lung cancer susceptibility.

10.
J Exp Clin Cancer Res ; 43(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163890

RESUMO

BACKGROUND: Ceramide metabolism is crucial in the progress of brain metastasis (BM). However, it remains unexplored whether targeting ceramide metabolism may arrest BM. METHODS: RNA sequencing was applied to screen different genes in primary and metastatic foci and whole-exome sequencing (WES) to seek crucial abnormal pathway in BM + and BM-patients. Cellular arrays were applied to analyze the permeability of blood-brain barrier (BBB) and the activation or inhibition of pathway. Database and Co-Immunoprecipitation (Co-IP) assay were adopted to verify the protein-protein interaction. Xenograft and zebrafish model were further employed to verify the cellular results. RESULTS: RNA sequencing and WES reported the involvement of RPTOR and ceramide metabolism in BM progress. RPTOR was significantly upregulated in BM foci and increased the permeability of BBB, while RPTOR deficiency attenuated the cell invasiveness and protected extracellular matrix. Exogenous RPTOR boosted the SPHK2/S1P/STAT3 cascades by binding YY1, in which YY1 bound to the regions of SPHK2 promoter (at -353 ~ -365 nt), further promoting the expression of SPHK2. The latter was rescued by YY1 RNAi. Xenograft and zebrafish model showed that RPTOR blockade suppressed BM of non-small cell lung cancer (NSCLC) and impaired the SPHK2/S1P/STAT3 pathway. CONCLUSION: RPTOR is a key driver gene in the brain metastasis of lung cancer, which signifies that RPTOR blockade may serve as a promising therapeutic candidate for clinical application.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Peixe-Zebra , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ceramidas/uso terapêutico , Proteína Regulatória Associada a mTOR , Fator de Transcrição YY1/genética
11.
Anticancer Drugs ; 35(1): 93-96, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37449979

RESUMO

Third-generation EGFR-TKIs can be used to treat advanced non-small cell lung cancer patients with T790M resistance mutation induced by first- or second-generation EGFR-TKIs. However, it will also result in drug resistance, and the resistance mechanisms of third-generation EGFR-TKIs are complex. Here we reported a patient diagnosed with advanced lung adenocarcinoma and EGFR positive in September 2016. Following first-line targeted therapy with gefitinib, genetic testing showed EGFR T790M positive, which resulted in a change to osimertinib targeted therapy. In May 2021, troponin and creatinine levels were elevated, and the tumor hyperprogressed to severe lung cancer. Repeated genetic testing revealed that EGFR genotype converted to a non-classical mutation and EGFR T790M turned negative, which caused third-generation EGFR-TKI resistance. As a result, afatinib combined with anlotinib was selected to stabilize the patient's condition. We were inspired by the case that it reflects the significance and necessity of exploring the resistance mechanism and dynamically detecting genetic status throughout the course of treatment, which may help realize individualized precision therapy, and maximize the potential of patient.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Afatinib/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Mutação , Resistencia a Medicamentos Antineoplásicos
12.
Mol Omics ; 20(2): 103-114, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-37942799

RESUMO

The modification patterns of N6-methyladenosine (m6A) regulators and interacting genes are deeply involved in tumors. However, the effect of m6A modification patterns on human proteomics remains largely unknown. We evaluated the molecular characteristics and clinical relevance of m6A modification proteomics patterns among 1013 pan-cancer samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). More than half of the m6A proteins were expressed at higher levels in tumor tissues and presented oncogenic characteristics. Furthermore, we performed multi-omics analyses integrating with transcriptomics data of m6A regulators and interactive coding and non-coding RNAs and developed a m6A multi-omics signature to identify potential m6A modification target proteins across global proteomics. It was significantly associated with overall survival in nine cancer types, tumor mutation burden (P = 0.01), and immune checkpoints including PD-L1 (P = 4.9 × 10-8) and PD-1 (P < 0.01). We identified 51 novel proteins associated with the multi-omics signature (PFDR < 0.05). These proteins were functional through pathway enrichment analyses. The protein with the highest hit frequency was CHORDC1, which was significantly up-regulated in tumor tissues in nine cancer types. Its higher abundance was significantly associated with a poorer prognosis in seven cancer types. The identified m6A target proteins might provide infomation for the study of molecular mechanism of cancer.


Assuntos
Adenina/análogos & derivados , Multiômica , Neoplasias , Humanos , Proteômica , Neoplasias/genética
13.
Protoplasma ; 261(1): 161-171, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37428235

RESUMO

Enhanced ultraviolet-B (UV-B) radiation can change the interaction between crops and pathogens. The effects of single and compound stresses of enhanced UV-B radiation (5.0 kJ·m-2) and Magnaporthe oryzae on the morphology, anatomy, and ultrastructure of rice leaves were investigated. M. oryzae infection decreased the leaf area and thickness, reduced the stomatal area and density, and caused damages to the leaf ultrastructure, such as cytoplasm-cell wall separation, atrophy and sinking of fan-shaped bulliform cells, and chloroplast deformation. The enhanced UV-B radiation supplied before or during M. oryzae infection remarkably decreased the mycelia number of M. oryzae in leaf epidermis, increased the leaf area, leaf thickness, stomatal density, and mastoid number; and alleviated the ultrastructural damages induced by M. oryzae to keep an integral chloroplast. While the UV-B radiation was supplied after M. oryzae infection, its alleviation effects on the damages induced by M. oryzae infection on the morphology and structure of rice leaf were attenuated. Thus, the alleviation of enhanced UV-B radiation on damages induced by M. oryzae infection on rice leaves was related to its application period. The enhanced UV-B radiation supplied before or during M. oryzae infection allowed the rice leaf to resist M. oryzae infection.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Doenças das Plantas , Folhas de Planta
14.
Acc Chem Res ; 56(16): 2225-2240, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37535829

RESUMO

ConspectusCO2 conversion to valuable chemicals is effective at reducing CO2 emissions. We previously proposed valorization strategies and developed efficient catalysts to address thermodynamic stability and kinetic inertness issues related to CO2 conversion. Earlier, we developed molecular capture reagents and catalysts to integrate CO2 capture and conversion, i.e., in situ transformation. Based on the mechanistic understanding of CO2 capture, activation, and transformation at a molecular level, we set out to develop heterogeneous catalysts by incorporating catalytic units into nanomaterials via the immobilization of active molecular catalysts onto nanomaterials and designing nanomaterials with intrinsic catalytic sites.In thermocatalytic CO2 conversion, carbonaceous and metal-organic framework (MOF)-based catalysts were developed for nonreductive and reductive CO2 conversion. Novel Cu- and Zn-based MOFs and carbon-supported Cu catalysts were prepared and successfully applied to the cycloaddition, carboxylation, and carboxylative cyclization reactions with CO2, generating cyclic carbonates, carboxyl acids, and oxazolidinones as respective target products. Reductive conversion of CO2, especially reductive functionalization with CO2, is a promising transformation strategy to produce valuable chemicals, alleviating chemical production that relies on petrochemistry. We explored the hierarchical reductive functionalization of CO2 using organocatalysts and proposed strategies to regulate the CO2 reduction level, triggering heterogeneous catalyst investigation. Introducing multiple active sites into nanomaterials opens possibilities to develop novel CO2 transformation strategies. CO2 capture and in situ conversion were realized with an N-doped carbon-supported Zn complex and MOF materials as CO2 adsorbents and catalysts. These nanomaterial-based catalysts feature high stability and excellent efficiency and act as shape-selective catalysts in some cases due to their unique pore structure.Nanomaterial-based catalysts are also appealing candidates for photocatalytic CO2 reduction (PCO2RR) and electrocatalytic CO2 reduction (ECO2RR), so we developed a series of hybrid photo-/electrocatalysts by incorporating active metal complexes into different matrixes such as porous organic polymers (POPs), metal-organic layers (MOLs), micelles, and conducting polymers. By introducing Re-bipyridine and Fe-porphyrin complexes into POPs and regulating the structure of the polymer chain, catalyst stability and efficiency increased in PCO2RR. PCO2RR in aqueous solution was realized by designing the Re-bipyridine-containing amphiphilic polymer to form micelles in aqueous solution and act as nanoreactors. We prepared MOLs with two different metallic centers, i.e., the Ni-bipyridine site and Ni-O node, to improve the efficiency for PCO2RR due to the synergistic effect of these metal centers. Sulfylphenoxy-decorated cobalt phthalocyanine (CoPc) cross-linked polypyrrole was prepared and used as a cathode, achieving the electrocatalytic transformation of diluted CO2 benefiting from the CO2 adsorption capability of polypyrrole. We fabricated immobilized 4-(t-butyl)-phenoxy cobalt phthalocyanine and Bi-MOF as cathodes to promote the paired electrolysis of CO2 and 5-hydroxymethylfurfural (HMF) and obtained CO2 reductive products and 2,5-furandicarboxylic acid (FDCA) efficiently.

15.
J Biol Eng ; 17(1): 48, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488558

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a serious injury with high mortality and disability rates, and there is no effective treatment at present. It has been reported that some treatments, such as drug intervention and stem cell transplantation have positive effects in promoting neurological recovery. Although those treatments are effective for nerve regeneration, many drawbacks, such as low stem cell survival rates and side effects caused by systemic medication, have limited their development. In recent years, injectable hydrogel materials have been widely used in tissue engineering due to their good biocompatibility, biodegradability, controllable properties, and low invasiveness. The treatment strategy of injectable hydrogels combined with stem cells or drugs has made some progress in SCI repair, showing the potential to overcome the drawbacks of traditional drugs and stem cell therapy. METHODS: In this study, a novel injectable electroactive hydrogel (NGP) based on sodium hyaluronate oxide (SAO) and polyaniline-grafted gelatine (NH2-Gel-PANI) was developed as a material in which to load neural stem cells (NSCs) and donepezil (DPL) to facilitate nerve regeneration after SCI. To evaluate the potential of the prepared NGP hydrogel in SCI repair applications, the surface morphology, self-repairing properties, electrical conductivity and cytocompatibility of the resulting hydrogel were analysed. Meanwhile, we evaluated the neural repair ability of NGP hydrogels loaded with DPL and NSCs using a rat model of spinal cord injury. RESULTS: The NGP hydrogel has a suitable pore size, good biocompatibility, excellent conductivity, and injectable and self-repairing properties, and its degradation rate matches the repair cycle of spinal cord injury. In addition, DPL could be released continuously and slowly from the NGP hydrogel; thus, the NGP hydrogel could serve as an excellent carrier for drugs and cells. The results of in vitro cell experiments showed that the NGP hydrogel had good cytocompatibility and could significantly promote the neuronal differentiation and axon growth of NSCs, and loading the hydrogel with DPL could significantly enhance this effect. More importantly, the NGP hydrogel loaded with DPL showed a significant inhibitory effect on astrocytic differentiation of NSCs in vitro. Animal experiments showed that the combination of NGP hydrogel, DPL, and NSCs had the best therapeutic effect on the recovery of motor function and nerve conduction function in rats. NGP hydrogel loaded with NSCs and DPL not only significantly increased the myelin sheath area, number of new neurons and axon area but also minimized the area of the cystic cavity and glial scar and promoted neural circuit reconstruction. CONCLUSIONS: The DPL- and NSC-laden electroactive hydrogel developed in this study is an ideal biomaterial for the treatment of traumatic spinal cord injury.

16.
Am J Respir Crit Care Med ; 208(3): 280-289, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167549

RESUMO

Rationale: Genome-wide association studies have identified common variants of lung cancer. However, the contribution of rare exome-wide variants, especially protein-coding variants, to cancers remains largely unexplored. Objectives: To evaluate the role of human exomes in genetic predisposition to lung cancer. Methods: We performed exome-wide association studies to detect the association of exomes with lung cancer in 30,312 patients and 652,902 control subjects. A scalable and accurate implementation of a generalized mixed model was used to detect the association signals for loss-of-function, missense, and synonymous variants and gene-level sets. Furthermore, we performed association and Bayesian colocalization analyses to evaluate their relationships with intermediate exposures. Measurements and Main Results: We systematically analyzed 216,739 single-nucleotide variants in the human exome. The loss-of-function variants exhibited the most notable effects on lung cancer risk. We identified four novel variants, including two missense variants (rs202197044TET3 [Pmeta (P values of meta-analysis) = 3.60 × 10-8] and rs202187871POT1 [Pmeta = 2.21 × 10-8]) and two synonymous variants (rs7447927TMEM173 [Pmeta = 1.32 × 10-9] and rs140624366ATRN [Pmeta = 2.97 × 10-9]). rs202197044TET3 was significantly associated with emphysema (odds ratio, 3.55; Pfdr = 0.015), whereas rs7447927POT1 was strongly associated with telomere length (ß = 1.08; Pfdr (FDR corrected P value) = 3.76 × 10-53). Functional evidence of expression of quantitative trait loci, splicing quantitative trait loci, and isoform expression was found for the four novel genes. Gene-level association tests identified several novel genes, including POT1 (protection of telomeres 1), RTEL1, BSG, and ZNF232. Conclusions: Our findings provide insights into the genetic architecture of human exomes and their role in lung cancer predisposition.


Assuntos
Exoma , Neoplasias Pulmonares , Humanos , Teorema de Bayes , Exoma/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Mutação em Linhagem Germinativa/genética , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único/genética
17.
BMC Infect Dis ; 23(1): 231, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059987

RESUMO

BACKGROUND: Community-acquired pneumonia (CAP) is a major public health challenge worldwide. However, the aetiological and disease severity-related pathogens associated with CAP in adults in China are not well established based on the detection of both viral and bacterial agents. METHODS: A multicentre, prospective study was conducted involving 10 hospitals located in nine geographical regions in China from 2014 to 2019. Sputum or bronchoalveolar lavage fluid (BALF) samples were collected from each recruited CAP patient. Multiplex real-time PCR and bacteria culture methods were used to detect respiratory pathogens. The association between detected pathogens and CAP severity was evaluated. RESULTS: Among the 3,403 recruited eligible patients, 462 (13.58%) had severe CAP, and the in-hospital mortality rate was 1.94% (66/3,403). At least one pathogen was detected in 2,054 (60.36%) patients, with two or more pathogens were co-detected in 725 patients. The ten major pathogens detected were Mycoplasma pneumoniae (11.05%), Haemophilus influenzae (10.67%), Klebsiella pneumoniae (10.43%), influenza A virus (9.49%), human rhinovirus (9.02%), Streptococcus pneumoniae (7.43%), Staphylococcus aureus (4.50%), adenovirus (2.94%), respiratory syncytial viruses (2.35%), and Legionella pneumophila (1.03%), which accounted for 76.06-92.52% of all positive detection results across sampling sites. Klebsiella pneumoniae (p < 0.001) and influenza viruses (p = 0.005) were more frequently detected in older patients, whereas Mycoplasma pneumoniae was more frequently detected in younger patients (p < 0.001). Infections with Klebsiella pneumoniae, Staphylococcus aureus, influenza viruses and respiratory syncytial viruses were risk factors for severe CAP. CONCLUSIONS: The major respiratory pathogens causing CAP in adults in China were different from those in USA and European countries, which were consistent across different geographical regions over study years. Given the detection rate of pathogens and their association with severe CAP, we propose to include the ten major pathogens as priorities for clinical pathogen screening in China.


Assuntos
Infecções Comunitárias Adquiridas , Legionella pneumophila , Pneumonia Bacteriana , Pneumonia , Humanos , Adulto , Idoso , Pneumonia Bacteriana/diagnóstico , Pneumonia Bacteriana/epidemiologia , Pneumonia Bacteriana/complicações , Estudos Prospectivos , Pneumonia/diagnóstico , Pneumonia/epidemiologia , Pneumonia/etiologia , Streptococcus pneumoniae , Mycoplasma pneumoniae , Vírus Sinciciais Respiratórios , Klebsiella pneumoniae , Infecções Comunitárias Adquiridas/diagnóstico , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/etiologia
18.
Cancers (Basel) ; 15(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37046655

RESUMO

Brain metastasis (BM) is common in patients with non-small cell lung cancer (NSCLC) and is associated with a poor prognosis. Ceramide synthase 1 (CERS1) participates in malignancy development, but its potential role in NSCLC BM remains unclear. This study aimed to explore the physiological effects and molecular mechanism of CERS1 in NSCLC BM. CERS1 expression was evaluated in NSCLC tissues and cell lines, and its physiological roles were subsequently explored in vivo and in vitro. Mass spectrometry and co-immunoprecipitation were performed to explore CERS1-interacting proteins. The associated signaling pathways of CERS1 in NSCLC BM were further investigated using bioinformatics analysis and molecular biotechnology. We demonstrated that CERS1 was significantly downregulated in NSCLC cell lines and BM tissues, and its upregulation was associated with better prognoses. In vitro, CERS1 overexpression inhibited cell migration, invasion, and the ability to penetrate the blood-brain barrier. Moreover, CERS1 interacted with ubiquitin-specific protease 14 (USP14) and inhibited BM progression by downregulating the PI3K/AKT/mTOR signaling pathway. Further, CERS1 expression substantially suppressed BM tumor formation in vivo. This study demonstrated that CERS1 plays a suppressor role in NSCLC BM by interacting with USP14 and downregulating the PI3K/AKT/mTOR signaling pathway, thereby serving as a novel therapeutic target for NSCLC BM.

19.
Cell Rep ; 42(3): 112261, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36924495

RESUMO

Characterizing influences of DNA methylation (DNAm) on non-coding RNAs (ncRNAs) is important to understand the mechanisms of gene regulation and cancer outcome. In our study, we describe the results of ncRNA quantitative trait methylation sites (ncQTM) analyses on 8,545 samples from The Cancer Genome Atlas (TCGA), 763 samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC), and 516 samples from Genotype-Tissue Expression (GTEx) to identify the significant associations between DNAm sites and ncRNAs (miRNA, long non-coding RNA [lncRNA], small nuclear RNA [snRNA], small nucleolar RNA [snoRNA], and rRNA) across 32 cancer types. With more than 22 billion tests, we identify 302,764 cis-ncQTMs (6.28% of all tested) and 79,841,728 trans-ncQTMs (1.15% of all tested). Most DNAm sites (70.6% on average) are in trans association, while only 25.2% DNAm sites are in cis association. Further, we develop a subtype named ncmcluster based on cancer-specific ncRNAs thatis associated with tumor microenvironment, clinical outcome, and biological pathways. To comprehensively describe the ncQTM patterns, we developed a database named Pancan-ncQTM (http://bigdata.njmu.edu.cn/Pancan-ncQTM/).


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Metilação de DNA/genética , Proteômica , RNA não Traduzido/genética , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno , Microambiente Tumoral
20.
iScience ; 26(3): 106103, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36866248

RESUMO

CDCP1 is a transmembrane protein that is involved in a variety of important biological processes and upregulated in a variety of human solid malignancies; however, its spatial distribution and variation at the molecular level remain unclear. To solve this problem, we first analyzed its expression level and prognostic implications in lung cancer. Then, we used super-resolution microscopy to reveal the spatial organization of CDCP1 at different levels, and found that cancer cells generated more and larger CDCP1 clusters than normal cells. Furthermore, we found that CDCP1 can be integrated into larger and denser clusters as functional domains upon activation. Our findings elucidated the significant differences of CDCP1 clustering characteristics between cancer and normal cells, and revealed the relationship between its distribution and function, which will contribute to a comprehensive understanding of its oncogenic mechanism, and will be of great help for the development of CDCP1-targeted drugs for lung cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA