Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Neurol Sci ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862654

RESUMO

BACKGROUND: Altered gut metabolites, especially short-chain fatty acids (SCFAs), in feces and plasma are observed in patients with Parkinson's disease (PD). OBJECTIVE: We aimed to investigate the colonic expression of two SCFA receptors, free fatty acid receptor (FFAR)2 and FFAR3, and gut barrier integrity in patients with PD and correlations with clinical severity. METHODS: In this retrospective study, colonic biopsy specimens were collected from 37 PD patients and 34 unaffected controls. Of this cohort, 31 participants (14 PD, 17 controls) underwent a series of colon biopsies. Colonic expression of FFAR2, FFAR3, and the tight junction marker ZO-1 were assayed by immunofluorescence staining. The You Only Look Once (version 8, YOLOv8) algorithm was used for automated detection and segmentation of immunostaining signal. PD motor function was assessed with the Movement Disorder Society (MDS)-Unified Parkinson's Disease Rating Scale (UPDRS), and constipation was assessed using Rome-IV criteria. RESULTS: Compared with controls, PD patients had significantly lower colonic expression of ZO-1 (p < 0.01) and FFAR2 (p = 0.01). On serial biopsy, colonic expression of FFAR2 and FFAR3 was reduced in the pre-motor stage before PD diagnosis (both p < 0.01). MDS-UPDRS motor scores did not correlate with colonic marker levels. Constipation severity negatively correlated with colonic ZO-1 levels (r = -0.49, p = 0.02). CONCLUSIONS: Colonic expression of ZO-1 and FFAR2 is lower in PD patients compared with unaffected controls, and FFAR2 and FFAR3 levels decline in the pre-motor stage of PD. Our findings implicate a leaky gut phenomenon in PD and reinforce that gut metabolites may contribute to the process of PD.

2.
BMC Biol ; 21(1): 293, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110916

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder with clinical presentations of progressive cognitive and memory deterioration. The pathologic hallmarks of AD include tau neurofibrillary tangles and amyloid plaque depositions in the hippocampus and associated neocortex. The neuronal aggregated tau observed in AD cells suggests that the protein folding problem is a major cause of AD. J-domain-containing proteins (JDPs) are the largest family of cochaperones, which play a vital role in specifying and directing HSP70 chaperone functions. JDPs bind substrates and deliver them to HSP70. The association of JDP and HSP70 opens the substrate-binding domain of HSP70 to help the loading of the clients. However, in the initial HSP70 cycle, which JDP delivers tau to the HSP70 system in neuronal cells remains unclear. RESULTS: We screened the requirement of a diverse panel of JDPs for preventing tau aggregation in the human neuroblastoma cell line SH-SY5Y by a filter retardation method. Interestingly, knockdown of DNAJB6, one of the JDPs, displayed tau aggregation and overexpression of DNAJB6b, one of the isoforms generated from the DNAJB6 gene by alternative splicing, reduced tau aggregation. Further, the tau bimolecular fluorescence complementation assay confirmed the DNAJB6b-dependent tau clearance. The co-immunoprecipitation and the proximity ligation assay demonstrated the protein-protein interaction between tau and the chaperone-cochaperone complex. The J-domain of DNAJB6b was critical for preventing tau aggregation. Moreover, reduced DNAJB6 expression and increased tau aggregation were detected in an age-dependent manner in immunohistochemical analysis of the hippocampus tissues of a mouse model of tau pathology. CONCLUSIONS: In summary, downregulation of DNAJB6b increases the insoluble form of tau, while overexpression of DNAJB6b reduces tau aggregation. Moreover, DNAJB6b associates with tau. Therefore, this study reveals that DNAJB6b is a direct sensor for its client tau in the HSP70 folding system in neuronal cells, thus helping to prevent AD.


Assuntos
Doença de Alzheimer , Proteínas de Choque Térmico HSP40 , Chaperonas Moleculares , Proteínas do Tecido Nervoso , Neuroblastoma , Animais , Humanos , Camundongos , Processamento Alternativo , Doença de Alzheimer/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/genética , Dobramento de Proteína , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Curr Oncol ; 30(2): 1699-1707, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36826092

RESUMO

Currently, the active surveillance of men with favorable intermediate-risk localized prostate cancer (PCa) is a longstanding controversy, in terms of their oncological outcomes, and radical prostatectomy would constitute a similar concern of overtreatment, regarding its functional outcomes. Thus, focal therapy could be considered in men belonging to favorable intermediate-risk group. Among all focal therapies, high-intensity focused ultrasound (HIFU) was the most studied methodology in clinical trials. Although HIFU provided better functional outcomes than radical prostatecomy, the oncological outcomes were inferior in men with intermediate-risk localized PCa. Two articles have been published discussing the feasibility and clinical outcomes of robot-assisted partial prostatectomy (RAPP), and both the functional and oncological outcomes were superior than those with HIFU. However, the rate of positive surgical margins (PSMs) was reported as high in the literature. Here, we present a case of favorable intermediate-risk localized PCa with an isolated tumor at the anterior apex. After reconstructing a personal three-dimensional (3D) image, we utilized it in a 3D image-guided precise excise, followed by intraoperative frozen specimen review. We found that this method may present a resolution to the high PSM rate documented in the current literature regarding RAPP. This method merits further study with a well-designed prospective study.


Assuntos
Neoplasias da Próstata , Procedimentos Cirúrgicos Robóticos , Robótica , Realidade Virtual , Masculino , Humanos , Estudos Prospectivos , Procedimentos Cirúrgicos Robóticos/métodos , Neoplasias da Próstata/patologia , Prostatectomia/métodos
4.
Arch Biochem Biophys ; 713: 109058, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34627749

RESUMO

Antrodia cinnamomea (AC) is a nutraceutical fungus and studies have suggested that AC has the potential to prevent or alleviate diseases. However, little is known about the AC-induced phenotypes on the intestine-liver axis and gut microbial alterations. Here, we performed two-dimensional difference gel electrophoresis (2D-DIGE) and MALDI-Biotyper to elaborate the AC-induced phenotypes on the intestine-liver axis and gut microbial distribution of C57BL/6 mice. The experimental outcomes showed that the hepatic density may increase by elevating hepatic redox regulation, lipid degradation and glycolysis-related proteins and alleviating cholesterol biosynthesis and transport-related proteins in C57BL/6 mice with AC treatment. Moreover, AC facilitates intestinal glycolysis, TCA cycle, redox and cytoskeleton regulation-related proteins, but also reduces intestinal vesicle transport-related proteins in C57BL/6 mice. However, the body weight, GTT, daily food/water intake, and fecal/urine weight were unaffected by AC supplementation in C57BL/6 mice. Notably, the C57BL/6-AC mice had a higher gut microbial abundance of Alistipes shahii (AS) than C57BL/6-Ctrl mice. In summary, the AC treatment affects intestinal permeability by regulating redox and cytoskeleton-related proteins and elevates the gut microbial abundance of AS in C57BL/6 mice that might be associated with increasing hepatic density and metabolism-related proteins of the liver in C57BL/6 mice. Our study provides an insight into the mechanisms of AC-induced phenotypes and a comprehensive assessment of AC's nutraceutical effect in C57BL/6 mice.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Polyporales , Proteoma/metabolismo , Animais , Hepatócitos/metabolismo , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
5.
Cell Biochem Funct ; 39(3): 367-379, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33135206

RESUMO

Lung cancer is one of the leading causes of cancer-related death worldwide. The most common type of lung cancer is non-small cell lung cancer (NSCLC). When NSCLC is detected, patients are typically already in a metastatic stage. Metastasized cancer is a major obstacle of effective treatment and understanding the mechanisms underlying metastasis is critical to treat cancer. Herein, we selected an invasive subpopulation from the human lung cancer cell line A549 using the transwell system and named it as A549-I5. Invasive and migratory activities of this cell line were analysed using wound healing, invasion, and migration assays. In addition, epithelial-mesenchymal transition (EMT) markers, such as Snail 1, Twist, Vimentin, N-cadherin and E-cadherin, were assessed through immunoblotting. In comparison to A549 cells, the invasive A549-I5 lung cancer cells had enhanced invasiveness, motility and EMT marker expression. Proteomic analysis identified 83 significantly differentially expressed proteins in A549-I5 cells. These identified proteins were classified according to their cellular functions and most were involved in cytoskeleton, redox regulation, protein degradation and protein folding. In summary, our results provide potential diagnostic markers and therapeutic candidates for the treatment of NSCLC metastasis. SIGNIFICANCE OF THE STUDY: When NSCLC is detected, most patients are already in a metastatic stage. Herein, we selected an invasive subpopulation from a human lung cancer cell line which had increased EMT markers as well as high wound healing, invasion and migration abilities. Proteomic analysis identified numerous proteins associated with functions in cytoskeleton, redox regulation, protein degradation and protein folding that were differentially expressed in these cells. These results may provide potential diagnostic markers and therapeutic candidates for the treatment of NSCLC metastasis.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Células A549 , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Proteínas de Neoplasias/genética
6.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899874

RESUMO

A characteristic of diabetes mellitus is hyperglycemia, which is considered with an emphasis on the diabetic retinopathy of progressive neurodegenerative disease. Retinal ganglion cells (RGCs) are believed to be important cells affected in the pathogenesis of diabetic retinopathy. Transforming growth factor-beta (TGF-ß) is a neuroprotective protein that helps to withstand various neuronal injuries. To investigate the potential roles and regulatory mechanisms of TGF-ß in hyperglycemia-triggered damage of RGCs in vitro, we established RGCs in 5.5, 25, 50, and 100 mM D-glucose supplemented media and focused on the TGF-ß-related oxidative stress pathway in combination with hydrogen peroxide (H2O2). Functional experiments showed that TGF-ß1/2 protein expression was upregulated in RGCs with hyperglycemia. The knockdown of TGF-ß enhanced the accumulation of reactive oxygen species (ROS), inhibited the cell proliferation rate, and reduced glutathione content in hyperglycemia. Furthermore, the results showed that the TGF-ß-mediated enhancement of antioxidant signaling was correlated with the activation of stress response proteins and the antioxidant pathway, such as aldehyde dehydrogenase 3A1 (ALDH3A1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), and hypoxia-inducible factor (HIF-1α). Summarizing, our results demonstrated that TGF-ß keeps RGCs from hyperglycemia-triggered harm by promoting the activation of the antioxidant pathway, suggesting a potential anti-diabetic therapy for the treatment of diabetic retinopathy.


Assuntos
Estresse Oxidativo/fisiologia , Células Ganglionares da Retina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antioxidantes/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/farmacologia , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/fisiologia , Fatores de Crescimento Transformadores/metabolismo
7.
Chem Biol Interact ; 331: 109249, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980322

RESUMO

Oxidative stress provides a major contribution to the pathogenesis of glaucoma and may induce retinal ganglion cell (RGC) damage. Transforming growth factor ß (TGF-ß) has appeared as a neuroprotective protein in various indignities. However, the TGF-ß mechanism of protective effects against oxidative stress damage in RGCs still undetermined. In our research, we investigated the regulatory mechanisms and potential effects of TGF-ß1 & TGF-ß2 in hydrogen peroxide (H2O2)-stimulated oxidative stress of RGCs in vitro. By a series of cell functional qualitative analysis, such as MTT cell viability assay, wound healing ability assay, apoptosis assay, intracellular ROS detection, immunoblot analysis, intracellular GSH content, and high-resolution respirometry, we illustrated the cell state in oxidative stress-induced injury. Results of protein expression showed that TGF-ß1 & TGF-ß2 was upregulated in RGCs after H2O2 stimulation. Cell functional assays resulted that knockdown of TGF-ß1 & TGF-ß2 reduced survival rate whereas enhanced apoptosis and accumulation of reactive oxygen species (ROS). Especially TGF-ß1 upregulation promoted the protein expression of aldehyde dehydrogenase 3A1 (ALDH3A1) and increased the activity of antioxidant and neuroprotection pathways. Additionally, TGF-ß1 & TGF-ß2 on antioxidant signaling was related to activation of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor (Nrf2), which are stress-response proteins. ROS accumulation followed by the accumulation of hypoxia-inducible factor (HIF-1α) caused mitochondrial damage and led to neurodegeneration. In summary, our results demonstrated that TGF-ß1 preserves RGCs from free radicals-mediated injury by upregulating the activation of Nrf2 expression and HO-1 signaling balance HIF-1α upregulation, implying a prospective role of TGF-ß1 in retinal neuroprotection-related therapies.


Assuntos
Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Acetilcisteína/farmacologia , Aldeído Desidrogenase/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia
8.
J Cell Mol Med ; 24(20): 11883-11902, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32893977

RESUMO

More than 70% of patients with ovarian cancer are diagnosed in advanced stages. Therefore, it is urgent to identify a promising prognostic marker and understand the mechanism of ovarian cancer metastasis development. By using proteomics approaches, we found that UDP-glucose dehydrogenase (UGDH) was up-regulated in highly metastatic ovarian cancer TOV21G cells, characterized by high invasiveness (TOV21GHI ), in comparison to its parental control. Previous reports demonstrated that UGDH is involved in cell migration, but its specific role in cancer metastasis remains unclear. By performing immunohistochemical staining with tissue microarray, we found overexpression of UGDH in ovarian cancer tissue, but not in normal adjacent tissue. Silencing using RNA interference (RNAi) was utilized to knockdown UGDH, which resulted in a significant decrease in metastatic ability in transwell migration, transwell invasion and wound healing assays. The knockdown of UGDH caused cell cycle arrest in the G0 /G1 phase and induced a massive decrease of tumour formation rate in vivo. Our data showed that UGDH-depletion led to the down-regulation of epithelial-mesenchymal transition (EMT)-related markers as well as MMP2, and inactivation of the ERK/MAPK pathway. In conclusion, we found that the up-regulation of UGDH is related to ovarian cancer metastasis and the deficiency of UGDH leads to the decrease of cell migration, cell invasion, wound healing and cell proliferation ability. Our findings reveal that UGDH can serve as a prognostic marker and that the inhibition of UGDH is a promising strategy for ovarian cancer treatment.


Assuntos
Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Uridina Difosfato Glucose Desidrogenase/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Polimerização , Proteômica , RNA Interferente Pequeno/metabolismo , Cicatrização , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Cell Mol Med ; 24(17): 9737-9751, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32672400

RESUMO

Cancer metastasis is a common cause of failure in cancer therapy. However, over 60% of oral cancer patients present with advanced stage disease, and the five-year survival rates of these patients decrease from 72.6% to 20% as the stage becomes more advanced. In order to manage oral cancer, identification of metastasis biomarker and mechanism is critical. In this study, we use a pair of oral squamous cell carcinoma lines, OC3, and invasive OC3-I5 as a model system to examine invasive mechanism and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to examine the global protein expression changes between OC3 and invasive OC3-I5. A proteomic study reveals that invasive properties alter the expression of 101 proteins in OC3-I5 cells comparing to OC3 cells. Further studies have used RNA interference technique to monitor the influence of progesterone receptor membrane component 1 (PGRMC1) protein in invasion and evaluate their potency in regulating invasion and the mechanism it involved. The results demonstrated that expression of epithelial-mesenchymal transition (EMT) markers including Twist, p-Src, Snail1, SIP1, JAM-A, vimentin and vinculin was increased in OC3-I5 compared to OC3 cells, whereas E-cadherin expression was decreased in the OC3-I5 cells. Moreover, in mouse model, PGRMC1 is shown to affect not only migration and invasion but also metastasis in vivo. Taken together, the proteomic approach allows us to identify numerous proteins, including PGRMC1, involved in invasion mechanism. Our results provide useful diagnostic markers and therapeutic candidates for the treatment of oral cancer invasion.


Assuntos
Proliferação de Células/genética , Proteínas de Membrana/genética , Neoplasias Bucais/genética , Proteínas de Neoplasias/genética , Receptores de Progesterona/genética , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Xenoenxertos , Humanos , Camundongos , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Proteômica
10.
J Pharm Biomed Anal ; 186: 113300, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32413824

RESUMO

Cancer metastasis is the major cause of death in pancreatic cancer. We have established a pair of pancreatic ductal adenocarcinoma cell line, PANC1 and invasive PANC1-I5, as a model system toinvestigate the metastatic mechanism as well as potential therapeutic targets in pancreatic cancer. We used proteomic analysis based on two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to examine the global protein expression alterations between PANC1 and PANC1-I5. Proteomic study revealed that 88 proteins are differentially expressed between PANC1-I5 and PANC1 cells, and further functional evaluations through protein expression validation, gene knockout, migration and invasion analysis revealed that galectin-1 is one of the potential players in modulating pancreatic cancer metastasis. To conclude, we have identified numerous proteins might be associated with pancreatic cancer invasiveness in the pancreatic cancer model.


Assuntos
Carcinoma Ductal Pancreático/patologia , Galectina 1/metabolismo , Neoplasias Pancreáticas/patologia , Proteômica , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletroforese em Gel Diferencial Bidimensional
11.
Front Pediatr ; 7: 169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114774

RESUMO

Yolk sac tumor (YST), which most frequently arises in the gonads as a type of germ cell tumor, is rare in children but is highly malignant. It has been suggested that alpha-fetoprotein (AFP) can be applied as a feasible tumor marker because its level was elevated in >90% of YST. The treatment generally involves debulking surgery of tumors followed by systemic chemotherapy. Metastasis process of YST in children is different from that in adults and thus the treatment option is required. In this study, we described a rare case of YST in terms of the clinical manifestation, imaging, and histopathology findings, diagnosis and treatment in an 8-year-old girl. Furthermore, it is important to investigate more thoroughly a patient with history of intermittent abdominal pain and fever with previously multiple accesses, because these might be the critical signs for YST that should be alarmed for early treatment. Although YST is rare in children, pediatric physicians should be aware of this and prompt treatment should be addressed.

12.
Clin Epigenetics ; 11(1): 85, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142371

RESUMO

BACKGROUND: Oncogenic K-Ras signaling highly relies on the canonical Ras/MEK/ERK pathway to contribute to pancreatic cancer progression. However, numerous efforts of MEK inhibitors have failed to provide an optimal antitumor effect for pancreatic cancer in practice. The aim of the present work was to develop a more efficacious therapeutic intervention for MEK inhibitors through combination with histone deacetylase (HDAC) inhibitor MPT0E028. METHODS: The effects of combined therapy on cell viability, apoptosis, protein, and RNA expressions were determined by MTT assay, flow cytometry, western blotting, and quantitative PCR analysis. The AsPC-1 xenograft was used to assess antitumor effects in vivo. RESULTS: The co-administration of MPT0E028 and MEK inhibitor yielded synergistic effects on cell viability suppression both in K-Ras mutated and wild-type pancreatic cancer cells and also markedly triggered cell apoptosis. Surprisingly, ERK and epidermal growth factor receptor (EGFR) were activated by the long-term and low-concentration treatment of MPT0E028 or another HDAC inhibitor alone. Whereas, the pharmacological attenuation of ERK signaling dramatically abolished the MPTE028-induced p-ERK and EGFR expression. Overexpression of HDAC4, HDAC6, and MEK, respectively, reversed the cell death induced by the combined treatment. Finally, the combined treatment decreased the tumor volume in an AsPC-1 xenograft model compared to each individual treatment alone. CONCLUSIONS: The synergistic anti-survival effect of the combination was suggested to occur via compensation of the MEK inhibitor for activated ERK. Our results indicate that this combination strategy could benefit patients with pancreatic cancer beyond K-Ras status.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Indóis/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Epigênese Genética/efeitos dos fármacos , Receptores ErbB/genética , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Masculino , Camundongos , Neoplasias Pancreáticas/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridonas/administração & dosagem , Piridonas/farmacologia , Pirimidinonas/administração & dosagem , Pirimidinonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Pharm Biomed Anal ; 160: 344-350, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30114613

RESUMO

Evodiamine is a natural product extracted from herbal plants such as Tetradium which has shown to have anti-fat uptake and anti-proliferation properties. However, the effects of evodiamine on the behavior of thyroid cancers are largely unknown. To determine if evodiamine might be useful in the treatment of thyroid cancer and its cytotoxic mechanism, we analyzed the impact of evodiamine treatment on differential protein expression in human thyroid cancer cell line ARO using lysine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS). This study demonstrated 77 protein features that were significantly changed in protein expression and revealed evodiamine-induced cytotoxicity in thyroid cancer cells involves dysregulation of protein folding, cytoskeleton, cytoskeleton regulation and transcription control. Our work shows that this combined proteomic strategy provides a rapid method to study the molecular mechanisms of evodiamine-induced cytotoxicity in thyroid cancer cells. The identified targets may be useful for further evaluation as potential targets in thyroid cancer therapy.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Proteômica/métodos , Quinazolinas/farmacologia , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletroforese em Gel Diferencial Bidimensional/métodos
14.
Life Sci ; 207: 184-204, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29883720

RESUMO

AIMS: Honokiol is a natural product extracted from herbal plants such as the Magnolia species which have been shown to exhibit anti-tumor and anti-metastatic properties. However, the effects of honokiol on thyroid cancers are largely unknown. MATERIALS AND METHODS: To determine whether honokiol might be useful for the treatment of thyroid cancer and to elucidate the mechanism of toxicity of honokiol, we analyzed the impact of honokiol treatment on differential protein expression in human thyroid cancer cell line ARO using lysine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS). KEY FINDINGS: This study revealed 178 proteins that showed a significant change in expression levels and also revealed that honokiol-induced cytotoxicity in thyroid cancer cells involves dysregulation of cytoskeleton, protein folding, transcription control and glycolysis. SIGNIFICANCE: Our work shows that combined proteomic strategy provides a rapid method to study the molecular mechanisms of honokiol-induced cytotoxicity in thyroid cancer cells. The identified targets may be useful for further evaluation as potential targets in thyroid cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Neoplasias da Glândula Tireoide/patologia , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Citoesqueleto/metabolismo , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Magnolia/química , Espectrometria de Massas , Metástase Neoplásica/tratamento farmacológico , Extratos Vegetais/farmacologia , Processamento de Proteína Pós-Traducional , Proteoma , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Neoplasias da Glândula Tireoide/tratamento farmacológico
15.
Cell Transplant ; 27(3): 456-470, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29756519

RESUMO

Parkinson's disease (PD) causes motor dysfunction and dopaminergic cell death. Drug treatments can effectively reduce symptoms but often cause unwanted side effects. Stem cell therapies using cell replacement or indirect beneficial secretomes have recently emerged as potential therapeutic strategies. Although various types of stem cells have been proposed as possible candidates, adipose-derived stem cells (ADSCs) are easily obtainable, more abundant, less ethically disputed, and able to differentiate into multiple cell lineages. However, treatment of PD using adult stem cells is known to be less efficacious than neuron or embryonic stem cell transplantation. Therefore, improved therapies are urgently needed. n-Butylidenephthalide (BP), which is extracted from Angelica sinensis, has been shown to have anti-inflammatory and neuroprotective effects. Indeed, we previously demonstrated that BP treatment of ADSCs enhances the expression of neurogenesis and homing factors such as nuclear receptor related 1 protein, stromal-derived factor 1, and brain-derived neurotrophic factor. In the present study, we examined the ability of BP-pretreated ADSC transplantation to improve PD motor symptoms and protect dopamine neurons in a mouse model of PD. We evaluated the results using neuronal behavior tests such as beam walking, rotarod, and locomotor activity tests. ADSCs with or without BP pretreatment were transplanted into the striatum. Our findings demonstrated that ADSC transplantation improved motor abilities with varied efficacies and that BP stimulation improved the therapeutic effects of transplantation. Dopaminergic cell numbers returned to normal in ADSC-transplanted mice after 22 d. In summary, stimulating ADSCs with BP improved PD recovery efficiency. Thus, our results provide important new strategies to improve stem cell therapies for neurodegenerative diseases in future studies.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Doença de Parkinson/terapia , Anidridos Ftálicos/farmacologia , Adipócitos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Brain Res ; 1678: 397-406, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155003

RESUMO

Many studies have demonstrated that combining nerve conduits with neural stem cells or growth factors can repair peripheral nerve injury in rodents. However, nerve damage does occur with longer gaps in human than in rodents, thus findings from rodent studies are difficult to translate to clinical practice. Minipigs have a longer gap that is more closely applicable to the challenge of human nerve grafting in extensive traumatic nerve damage. In this study, human amniotic fluid stem cells (AFSCs) and polylactate nerve conduits were used to repair sciatic nerve injury in minipigs. The AFSCs exhibited the properties of mesenchymal stem cells with a propensity toward neural stem cells. Measurements of compound muscle action potential implied that administration of conduits with AFSCs was beneficial in function recovery in the minipig model compared with conduits alone. The results of diffusion tensor magnetic resonance imaging (DTI) based fiber tractography assay in the minipig model suggest that combining AFSCs with conduits could expedite the repair of sciatic nerve injury. Further, MR-based DTI provides an effective and non-invasive method to visualize the sciatic nerve and to monitor the regeneration progress of injured nerve in a longitudinal study.


Assuntos
Líquido Amniótico/citologia , Neuropatia Ciática/cirurgia , Transplante de Células-Tronco/métodos , Animais , Antígenos CD/metabolismo , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia , Fator 1 de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/fisiologia , Músculo Esquelético/fisiopatologia , Regeneração Nervosa , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo , Neuropatia Ciática/diagnóstico por imagem , Neuropatia Ciática/patologia , Células-Tronco , Suínos , Porco Miniatura
17.
Mol Cell Neurosci ; 79: 1-11, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27865767

RESUMO

Regeneration of injured peripheral nerves is a slow, complicated process that could be improved by implantation of neural stem cells (NSCs) or nerve conduit. Implantation of NSCs along with conduits promotes the regeneration of damaged nerve, likely because (i) conduit supports and guides axonal growth from one nerve stump to the other, while preventing fibrous tissue ingrowth and retaining neurotrophic factors; and (ii) implanted NSCs differentiate into Schwann cells and maintain a growth factor enriched microenvironment, which promotes nerve regeneration. In this study, we identified IL12p80 (homodimer of IL12p40) in the cell extracts of implanted nerve conduit combined with NSCs by using protein antibody array and Western blotting. Levels of IL12p80 in these conduits are 1.6-fold higher than those in conduits without NSCs. In the sciatic nerve injury mouse model, implantation of NSCs combined with nerve conduit and IL12p80 improves motor recovery and increases the diameter up to 4.5-fold, at the medial site of the regenerated nerve. In vitro study further revealed that IL12p80 stimulates the Schwann cell differentiation of mouse NSCs through the phosphorylation of signal transducer and activator of transcription 3 (Stat3). These results suggest that IL12p80 can trigger Schwann cell differentiation of mouse NSCs through Stat3 phosphorylation and enhance the functional recovery and the diameter of regenerated nerves in a mouse sciatic nerve injury model.


Assuntos
Interleucina-12/metabolismo , Regeneração Nervosa , Células-Tronco Neurais/transplante , Neurogênese , Traumatismos dos Nervos Periféricos/terapia , Células de Schwann/citologia , Nervo Isquiático/fisiologia , Animais , Células Cultivadas , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Fator de Transcrição STAT3/metabolismo , Transplante de Células-Tronco
19.
Sci Rep ; 6: 31664, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27526962

RESUMO

Developing new anticancer agents against ovarian cancer is an urgent medical need. MPT0G066, a novel synthetic arylsulfonamide compound, was shown to inhibit cell growth and decrease viability in human ovarian cancer cells. MPT0G066 induced arrest of the cell cycle at the multipolyploidy (MP) phase in SKOV3 and at the G2/M phase in A2780 cells, while increasing the proportion of cells in the subG1. Additionally, MPT0G066 induced c-Jun-NH2 terminal kinase (JNK) activation, influenced cell cycle regulatory and Bcl-2 family proteins, which triggered intrinsic apoptotic pathways through cleavage of caspase-3, -7, -9, and poly-(ADP-ribose) polymerase (PARP). Flow cytometry analysis of p-glycoprotein (p-gp) function showed that MPT0G066 was not a substrate of p-gp. Additionally, it was shown that MPT0G066 could decrease cell viability in multiple-drug-resistant human ovarian cancer cells. Furthermore, the combination of MPT0G066 and cisplatin presented a synergistic cytotoxic effect against ovarian cancer cell lines in vitro. MPT0G066 also significantly suppressed the growth of ovarian carcinoma and potentiated the antineoplastic effects of cisplatin in vivo. In conclusion, these findings indicate that MPT0G066 can be a potential anticancer agent against ovarian cancer that worthy of further development.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Cisplatino/uso terapêutico , MAP Quinase Quinase 4/metabolismo , Mitose/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Sulfonamidas/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Ovarianas/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Oncotarget ; 7(13): 17144-61, 2016 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-26958809

RESUMO

The oral cancer cell line OC3-I5 with a highly invasive ability was selected and derived from an established OSCC line OC3. In this study, we demonstrated that matrix metalloproteinases protein MMP-13 was up-regulated in OC3-I5 than in OC3 cells. We also observed that expression of epithelial-mesenchymal transition (EMT) markers including Twist, p-Src, Snail1, SIP1, JAM-A, and vinculin were increased in OC3-I5 compared to OC3 cells, whereas E-cadherin expression was decreased in the OC3-I5 cells. Using siMMP-13 knockdown techniques, we showed that siMMP-13 not only reduced the invasion and migration, but also the adhesion abilities of oral cancer cells. In support of the role of MMP-13 in metastasis, we used MMP-13 expressing plasmid-transfected 293T cells to enhance MMP-13 expression in the OC3 cells, transplanting the MMP-13 over expressing OC3 cells into nude mice led to enhanced lung metastasis. In summary, our findings show that MMP-13 promotes invasion and metastasis in oral cancer cells, suggesting altered expression of MMP-13 may be utilized to impede the process of metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA