Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 186: 108633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603814

RESUMO

In the severe pollution area of nanoplastics (NPs) and cadmium ions (Cd2+), the joint effects of their high environmental concentrations on primary producers may differ from those of low environmental doses. Thus, we investigated the physiological changes, cell morphology, molecular dynamic simulation, phenotypic interactions, and metabolomics responses of C. pyrenoidosa to high environmental concentrations of NPs and Cd2+ after 12-d acclimation. After 12-d cultivation, mono-NPs and mono-Cd2+ reduced cell density and triggered antioxidant enzymes, extracellular polymeric substances (EPS) production, and cell aggregation to defend their unfavorable effects. Based on the molecular dynamic simulation, the chlorine atoms of the NPs and Cd2+ had charge attraction with the nitrogen and phosphorus atoms in the choline and phosphate groups in the cell membrane, thereby NPs and Cd2+ could adsorb on the cells to destroy them. In the joint exposure, NPs dominated the variations of ultrastructure and metabolomics and alleviated the toxicity of NPs and Cd2+. Due to its high environmental concentration, more NPs could compete with the microalgae for Cd2+ and thicken cell walls, diminishing the Cd2+ content and antioxidant enzymes of microalgae. NPs addition also decreased the EPS content, while the bound EPS with -CN bond was kept to detoxicate Cd2+. Metabolomics results showed that the NPs downregulated nucleotide, arachidonic acid, and tryptophan metabolisms, while the Cd2+ showed an opposite trend. Compared with their respective exposures, metabolomics results found the changes in metabolic molecules, suggesting the NPs_Cd2+ toxicity was mitigated by balancing nucleotide, arachidonic acid, tryptophan, and arginine and proline metabolisms. Consequently, this study provided new insights that simultaneous exposure to high environmental concentrations of NPs and Cd2+ mitigated microalgae cellular toxicity, which may change their fates and biogeochemical cycles in aquatic systems.


Assuntos
Cádmio , Metabolômica , Microalgas , Cádmio/toxicidade , Microalgas/efeitos dos fármacos , Microalgas/metabolismo , Simulação de Dinâmica Molecular , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade
2.
Bioresour Technol ; 275: 35-43, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30576912

RESUMO

Aiming at simplifying the harvesting procedure, reducing the production cost, and improving the quality of microalgae-based biodiesel, herein, a novel one-step method for oil-rich biomass production and harvesting was proposed by growing Chlorella sp. with Aspergillus sp. in molasses wastewater. Lipid content and fatty acid profile were measured to assess the suitability of microalgal-fungal biomass for biodiesel production. The results showed that the highest biomass yield (4.215 g/L) was obtained when the inoculation ratio of fungi and microalgae was 100. Activities of fungi positive impacted the decolorization of wastewater and the removal of suspended solids. Thus, co-cultivation system had better performance than mono-system of microalgae in the removal of nutrients in wastewater. Analysis of biomass compositions showed that compared with mono-system of microalgae, co-cultivation system produced biomass with higher lipid content (35.2%) and yield microbial cell oil with lower unsaturation degree, potentially increasing the quality of microbial-cell-lipid based biodiesel.


Assuntos
Aspergillus/metabolismo , Biomassa , Chlorella/metabolismo , Microalgas/metabolismo , Melaço , Águas Residuárias/química , Lipídeos/biossíntese , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA