Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Front Pharmacol ; 15: 1408458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092218

RESUMO

Background: Recently, a sum of trials of programmed cell death-1 (PD-1) inhibitors combined with chemotherapy have shown excellent efficacy compared to chemotherapy alone in patients with previously untreated, advanced esophageal squamous cell carcinoma (ESCC). However, there is no head-to-head comparison and consensus on which immunotherapy regimen results in better survival outcomes. This study aimed to evaluate the survival efficacy of various PD-1 inhibitor-based therapies in the first-line treatments for patients with advanced ESCC. Methods: Data collected prior to 31 July 2023 were searched in the PubMed, Cochrane Library, Embase, Medline, and Web of Science databases. Overall survival (OS) and progression-free survival curves were pooled using the MetaSurv package. Survival data were compared by reconstructed individual patient data. Results: A total of 4,162 patients and seven randomized controlled trials were included. After synthesizing, PD-1 inhibitors prolonged median OS from 11.3 months (95% CI (confidence interval) 10.7-11.7) to 15.6 months (95% CI 14.7-16.3). Based on reconstructed patient-level data, the toripalimab, tislelizumab, and sintilimab group achieved the longest OS, whereas the sintilimab and tislelizumab group had the lowest risk of recurrence than other treatments. In patients with a combined positive score of ≥10, sintilimab had better OS efficacy than pembrolizumab (HR: 0.71, 95% CI: 0.52-0.96). In terms of tumor proportion score of ≥1%, camrelizumab, nivolumab, and toripalimab showed proximate survival benefits in both OS and progression-free survival. Conclusion: PD-1 inhibitor combined with chemotherapy significantly improved the survival time of patients with advanced ESCC. Toripalimab, tislelizumab, and sintilimab plus chemotherapy showed the best OS benefit. Longer progression-free benefits might be generated from adding tislelizumab and sintilimab to chemotherapy. Sintilimab was strongly recommended for patients with high programmed cell death-ligand 1 abundance. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42024501086].

2.
Metabolites ; 14(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921477

RESUMO

The complex process of aging leads to a gradual deterioration in the function of cells, tissues, and the entire organism, thereby increasing the risk of disease and death. Nicotinamide N-methyltransferase (NNMT) has attracted attention as a potential target for combating aging and its related pathologies. Studies have shown that NNMT activity increases over time, which is closely associated with the onset and progression of age-related diseases. NNMT uses S-adenosylmethionine (SAM) as a methyl donor to facilitate the methylation of nicotinamide (NAM), converting NAM into S-adenosyl-L-homocysteine (SAH) and methylnicotinamide (MNA). This enzymatic action depletes NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and generates SAH, a precursor of homocysteine (Hcy). The reduction in the NAD+ levels and the increase in the Hcy levels are considered important factors in the aging process and age-related diseases. The efficacy of RNA interference (RNAi) therapies and small-molecule inhibitors targeting NNMT demonstrates the potential of NNMT as a therapeutic target. Despite these advances, the exact mechanisms by which NNMT influences aging and age-related diseases remain unclear, and there is a lack of clinical trials involving NNMT inhibitors and RNAi drugs. Therefore, more in-depth research is needed to elucidate the precise functions of NNMT in aging and promote the development of targeted pharmaceutical interventions. This paper aims to explore the specific role of NNMT in aging, and to evaluate its potential as a therapeutic target.

3.
Front Pharmacol ; 15: 1410479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919254

RESUMO

Metabolic syndrome (MetS) represents a constellation of metabolic abnormalities, typified by obesity, hypertension, hyperglycemia, and hyperlipidemia. It stems from intricate dysregulations in metabolic pathways governing energy and substrate metabolism. While comprehending the precise etiological mechanisms of MetS remains challenging, evidence underscores the pivotal roles of aberrations in lipid metabolism and insulin resistance (IR) in its pathogenesis. Notably, nicotinamide N-methyltransferase (NNMT) has recently surfaced as a promising therapeutic target for addressing MetS. Single nucleotide variants in the NNMT gene are significantly correlated with disturbances in energy metabolism, obesity, type 2 diabetes (T2D), hyperlipidemia, and hypertension. Elevated NNMT gene expression is notably observed in the liver and white adipose tissue (WAT) of individuals with diabetic mice, obesity, and rats afflicted with MetS. Knockdown of NNMT elicits heightened energy expenditure in adipose and hepatic tissues, mitigates lipid accumulation, and enhances insulin sensitivity. NNMT catalyzes the methylation of nicotinamide (NAM) using S-adenosyl-methionine (SAM) as the donor methyl group, resulting in the formation of S-adenosyl-l-homocysteine (SAH) and methylnicotinamide (MNAM). This enzymatic process results in the depletion of NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and the generation of SAH, a precursor of homocysteine (Hcy). Consequently, this cascade leads to reduced NAD+ levels and elevated Hcy levels, implicating NNMT in the pathogenesis of MetS. Moreover, experimental studies employing RNA interference (RNAi) strategies and small molecule inhibitors targeting NNMT have underscored its potential as a therapeutic target for preventing or treating MetS-related diseases. Nonetheless, the precise mechanistic underpinnings remain elusive, and as of yet, clinical trials focusing on NNMT have not been documented. Therefore, further investigations are warranted to elucidate the intricate roles of NNMT in MetS and to develop targeted therapeutic interventions.

4.
ACS Synth Biol ; 13(6): 1798-1808, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748665

RESUMO

Betulinic acid (BA) is a lupane-type triterpenoid with potent anticancer and anti-HIV activities. Its great potential in clinical applications necessitates the development of an efficient strategy for BA synthesis. This study attempted to achieve efficient BA biosynthesis in Saccharomyces cerevisiae using systematic metabolic engineering strategies. First, a de novo BA biosynthesis pathway in S. cerevisiae was constructed, which yielded a titer of 14.01 ± 0.21 mg/L. Then, by enhancing the BA synthesis pathway and dynamic inhibition of the competitive pathway, a greater proportion of the metabolic flow was directed toward BA synthesis, achieving a titer of 88.07 ± 5.83 mg/L. Next, acetyl-CoA and NADPH supply was enhanced, which increased the BA titer to 166.43 ± 1.83 mg/L. Finally, another BA synthesis pathway in the peroxisome was constructed. Dual regulation of the peroxisome and cytoplasmic metabolism increased the BA titer to 210.88 ± 4.76 mg/L. Following fed-batch fermentation process modification, the BA titer reached 682.29 ± 8.16 mg/L. Overall, this work offers a guide for building microbial cell factories that are capable of producing terpenoids with efficiency.


Assuntos
Ácido Betulínico , Engenharia Metabólica , NADP , Triterpenos Pentacíclicos , Saccharomyces cerevisiae , Triterpenos , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Triterpenos Pentacíclicos/metabolismo , Triterpenos/metabolismo , NADP/metabolismo , Acetilcoenzima A/metabolismo , Fermentação , Vias Biossintéticas/genética
5.
Biomolecules ; 14(3)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38540721

RESUMO

Phycocyanobilin (PCB) is a natural blue tetrapyrrole chromophore that is found in phycocyanin and plays an essential role in photosynthesis. Due to PCB's antioxidation, anti-inflammatory and anti-cancer properties, it has been utilized in the food, pharmaceutical and cosmetic industries. Currently, the extraction of PCB from Spirulina involves complex processes, which has led to increasing interest in the biosynthesis of PCB in Escherichia coli. However, the PCB titer remains low because of the poor activity of key enzymes and the insufficient precursor supply. Here, the synthesis of PCB was firstly improved by screening the optimal heme oxygenase (HO) from Thermosynechococcus elongatus BP-1(HOT) and PCB: ferredoxin oxidoreductase from Synechocystis sp. PCC6803 (PcyAS). In addition, based on a rational design and the infrared fluorescence method for high-throughput screening, the mutants of HOT(F29W/K166D) and PcyAS(D220G/H74M) with significantly higher activities were obtained. Furthermore, a DNA scaffold was applied in the assembly of HOT and PcyAS mutants to reduce the spatial barriers, and the heme supply was enhanced via the moderate overexpression of hemB and hemH, resulting in the highest PCB titer (184.20 mg/L) obtained in a 5 L fermenter. The strategies applied in this study lay the foundation for the industrial production of PCB and its heme derivatives.


Assuntos
Escherichia coli , Ficocianina , Escherichia coli/genética , Ficobilinas/genética , Heme Oxigenase (Desciclizante) , Heme
6.
Foods ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540853

RESUMO

Ethyl carbamate (EC) is a 2A classified carcinogen in Chinese liquor that has raised many problems regarding food safety. Applying microorganisms to control the content of EC precursors in fermented grains has been proven as an effective method to reduce EC in alcoholic beverages. However, the utilization of microorganisms to decrease the precursors of EC (urea and cyanide) is still incomplete in regard to Chinese liquor. Thus, it is necessary to isolate strains with the degradative activities of urea and cyanide. Herein, Bacillus sonorensis F3 and Bacillus licheniformis YA2 strains were isolated from the fermented grains through multiple rounds of high-throughput screening, and the degradative abilities in urea and cyanide reached 95.72% and 75.48%, respectively. In addition, the urease from the B. sonorensis F3 strain and the carbon nitrogen hydrolase from the B. licheniformis YA2 strain were identified by the heterogeneous expression in Escherichia coli. Then, both F3 and YA2 strains were combined at a ratio of 5:1 and applied to eliminate the EC in the simulated fermentation of Chinese liquor; as a result, 51.10% of EC was reduced without affecting the main composition of flavor substances. The obtained strains have great potential in terms of the improvement of quality and safety of Chinese liquor.

7.
Theranostics ; 14(2): 662-680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169511

RESUMO

Rationale: Cancer local recurrence increases the mortality of patients, and might be caused by field cancerization, a pre-malignant alteration of normal epithelial cells. It has been suggested that cancer-derived small extracellular vesicles (CDEs) may contribute to field cancerization, but the underlying mechanisms remain poorly understood. In this study, we aim to identify the key regulatory factors within recipient cells under the instigation of CDEs. Methods: In vitro experiments were performed to demonstrate that CDEs promote the expression of CREPT in normal epithelial cells. TMT-based quantitative mass spectrometry was employed to investigate the proteomic differences between normal cells and tumor cells. Loss-of-function approaches by CRISPR-Cas9 system were used to assess the role of CREPT in CDEs-induced field cancerization. RNA-seq was performed to explore the genes regulated by CREPT during field cancerization. Results: CDEs promote field cancerization by inducing the expression of CREPT in non-malignant epithelial cells through activating the ERK signaling pathway. Intriguingly, CDEs failed to induce field cancerization when CREPT was deleted, highlighting the importance of CREPT. Transcriptomic analyses revealed that CDEs elicited inflammatory responses, primarily through activation of the TNF signaling pathway. CREPT, in turn, regulates the transduction of downstream signals of TNF by modulating the expression of TNFR2 and PI3K, thereby promoting inflammation-to-cancer transition. Conclusion: CREPT not only serves as a biomarker for field cancerization, but also emerges as a target for preventing the cancer local recurrence.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Linhagem Celular Tumoral , Proteômica , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Proteínas de Neoplasias/genética , Vesículas Extracelulares/metabolismo , Neoplasias/genética
9.
Curr Microbiol ; 81(1): 7, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962701

RESUMO

A novel actinomycete strain, designated H11425T, was isolated from a sediment sample collected from Baihua Lake, Guizhou Province, PR China, and a polyphasic approach was employed to determine its taxonomic position. 16S rRNA gene sequence comparisons showed that strain H11425T is most closely related to Pseudonocardia sulfidoxydans JCM 10411T (97.9%) and Pseudonocardia kunmingensis JCM 32122T (97.8%). Both of phylogenetic analysis based on 16S rRNA gene sequence and phylogenomic analysis based on whole-genome sequence showed that strain H11425T formed a separate clade within the genus Pseudonocardia. The draft genome had a length of 8,059,576 bp with a G + C content of 74.5%. The average nucleotide identity, average amino acid identity, and digital DNA-DNA hybridization values between strain H11425T and its closely related Pseudonocardia species were 76.8-79.0%, 64.8-69.9% and 21.7-23.3%, respectively, which were significantly lower than the widely accepted species-defined threshold. Strain H11425T contained meso-diaminopimelic acid, arabinose, galactose, glucose and ribose in its whole-cell hydrolysates. Mycolic acids were absent. The menaquinone was identifed as MK-8(H4). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylcholine, an unknown phospholipid and four unidentified aminophospholipids. The major fatty acids were iso-C16:0, iso-C14:0, iso H-C16:1 and iso-C16:0 2OH. On the basis of the taxonomic evidence, strain H11425T represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia lacus sp. nov. is proposed. The type strain is H11425T (= JCM 34851T = CICC 25118T).


Assuntos
Actinobacteria , Actinomycetales , Actinobacteria/genética , Pseudonocardia , Fosfatidiletanolaminas , Lagos , Filogenia , RNA Ribossômico 16S/genética , Fosfolipídeos , DNA
10.
Nat Commun ; 14(1): 7297, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949843

RESUMO

Sulfonation as one of the most important modification reactions in nature is essential for many biological macromolecules to function. Development of green sulfonate group donor regeneration systems to efficiently sulfonate compounds of interest is always attractive. Here, we design and engineer two different sulfonate group donor regeneration systems to boost the biosynthesis of sulfated compounds. First, we assemble three modules to construct a 3'-phosphoadenosine-5'-phosphosulfate (PAPS) regeneration system and demonstrate its applicability for living cells. After discovering adenosine 5'-phosphosulfate (APS) as another active sulfonate group donor, we engineer a more simplified APS regeneration system that couples specific sulfotransferase. Next, we develop a rapid indicating system for characterizing the activity of APS-mediated sulfotransferase to rapidly screen sulfotransferase variants with increased activity towards APS. Eventually, the active sulfonate group equivalent values of the APS regeneration systems towards trehalose and p-coumaric acid reach 3.26 and 4.03, respectively. The present PAPS and APS regeneration systems are environmentally friendly and applicable for scaling up the biomanufacturing of sulfated products.


Assuntos
Fosfoadenosina Fosfossulfato , Sulfatos , Sulfotransferases/genética , Sulfotransferases/metabolismo , Cinética
11.
ACS Appl Bio Mater ; 6(11): 4694-4702, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37824829

RESUMO

A copper selenide-embedded gellan gum hydrogel (Cu2-xSe@GG) is designed as an "all-in-one" antitumor agent. The obtained nanocomposite hydrogel exhibits strong near-infrared light absorption and high photothermal conversion efficiency in both the NIR-I and NIR-II biowindows. The photothermal conversion efficiency achieves 58.8% under the irradiation of 0.75 W/cm2 with a 1064 nm laser. Furthermore, the nanocomposite hydrogel has catalase- and peroxidase-mimicking activities, which could alter the tumor microenvironment by reducing hypoxia and/or increasing the production of reactive oxygen species. Moreover, the multifunctional Cu2-xSe@GG nanocomposite hydrogel can also be used as an immune agonist resiquimod (R848) carrier to promote immune regulation and enhance the therapeutic effect. The single-syringe R848/Cu2-xSe@GG treatment achieves synergetic photothermal immunotherapy, showing 97.4% of tumor regression rate from an initial large tumor of 300 mm3.


Assuntos
Hidrogéis , Neoplasias , Humanos , Cobre , Nanogéis , Neoplasias/terapia , Imunoterapia , Microambiente Tumoral
12.
Life Sci ; 331: 122042, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634815

RESUMO

AIMS: Memory impairment is a major clinical manifestation in Alzheimer's disease (AD) patients, while regular exercise may prevent and delay degenerative changes in memory functions, and our aim is to explore the influence and molecular mechanisms of aerobic exercise on the early stages of Alzheimer's disease. MAIN METHODS: 3-month-old male APP/PS1 transgenic AD mice and C57BL/6J wild-type mice were randomly divided into four groups: wild-type and APP/PS1 mice with sedentary (WT-SED, AD-SED), and running (WT-RUN, AD-RUN) for 12-weeks. The spatial learning and memory function, RNA-sequencing, spine density, synaptic associated protein, mRNA and protein expression involved in G protein-coupled receptor 81 (GPR81) signaling pathway, and complement factors in brain were measured. KEY FINDINGS: Aerobic exercise improved spatial learning and memory in APP/PS1 mice, potentially attributed to increased dendritic spine density. Subsequently, potential underlying mechanisms were identified through RNA sequencing: regular aerobic exercise could activate the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cAMP/PKA signaling pathway and upregulate synaptic function-related proteins to promote synaptic growth, possibly by modulating GPR81. Notably, regular aerobic exercise inhibited microglial activation, reversed the microglial phenotype, reduced the production of initiation factor C1q and central factor C3 in the complement cascade in the brain, prevented the colocalization of microglia and PSD-95, and thus prevented synaptic loss. SIGNIFICANCE: Physical exercise could play a critical role in improving cognitive function in AD by promoting synaptic growth and preventing synaptic loss, which may be related to the regulation of the GPR81/cAMP/PKA signaling pathway and inhibition of complement-mediated microglial phagocytosis of synapses.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Masculino , Animais , Lactente , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais , Proteínas do Sistema Complemento , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Homeostase , Modelos Animais de Doenças , Hipocampo/metabolismo , Presenilina-1
13.
J Fungi (Basel) ; 9(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233223

RESUMO

Retinol, the main active form of vitamin A, plays a role in maintaining vision, immune function, growth, and development. It also inhibits tumor growth and alleviates anemia. Here, we developed a Saccharomyces cerevisiae strain capable of high retinol production. Firstly, the de novo synthesis pathway of retinol was constructed in S. cerevisiae to realize the production of retinol. Second, through modular optimization of the metabolic network of retinol, the retinol titer was increased from 3.6 to 153.6 mg/L. Then, we used transporter engineering to regulate and promote the accumulation of the intracellular precursor retinal to improve retinol production. Subsequently, we screened and semi-rationally designed the key enzyme retinol dehydrogenase to further increase the retinol titer to 387.4 mg/L. Lastly, we performed two-phase extraction fermentation using olive oil to obtain a final shaking flask retinol titer of 1.2 g/L, the highest titer reported at the shake flask level. This study laid the foundation for the industrial production of retinol.

14.
ACS Synth Biol ; 12(4): 1275-1286, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37027231

RESUMO

l-Histidine is an essential proteinogenic amino acid in food with extensive applications in the pharmaceutical field. Herein, we constructed a Corynebacterium glutamicum recombinant strain for efficient biosynthesis of l-histidine. First, to alleviate the l-histidine feedback inhibition, the ATP phosphoribosyltransferase mutant HisGT235P-Y56M was constructed based on molecular docking and high-throughput screening, resulting in the accumulation of 0.83 g/L of l-histidine. Next, we overexpressed rate-limiting enzymes including HisGT235P-Y56M and PRPP synthetase and knocked out the pgi gene in the competing pathway, which increased the l-histidine production to 1.21 g/L. Furthermore, the energy status was optimized by decreasing the reactive oxygen species level and enhancing the supply of adenosine triphosphate, reaching a titer of 3.10 g/L in a shake flask. The final recombinant strain produced 5.07 g/L of l-histidine in a 3 L bioreactor, without the addition of antibiotics and chemical inducers. Overall, this study developed an efficient cell factory for l-histidine biosynthesis by combinatorial protein engineering and metabolic engineering.


Assuntos
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Engenharia de Proteínas/métodos , Engenharia Metabólica/métodos , Histidina/biossíntese , Simulação por Computador , Biocatálise , Mutação , Reatores Biológicos
15.
ACS Synth Biol ; 12(4): 1146-1153, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37014059

RESUMO

The metabolic burden caused by terpenoid accumulation limits the development of highly efficient microbial cell factories, which can be circumvented using exporter-mediated product secretion. Although our previous study showed that the pleiotropic drug resistance exporter (PDR11) mediates the export of rubusoside in Saccharomyces cerevisiae, the underlying mechanism is still unclear. Herein, we used GROMACS software to simulate PDR11-mediated rubusoside recruitment and found six residues (D116, D167, Y168, P521, R663, and L1146) on PDR11 that are critical for this process. We also explored the exportation potential of PDR11 for 39 terpenoids by calculating their binding affinity using batch molecular docking. Then, we verified the accuracy of the predicted results by conducting experiments with squalene, lycopene, and ß-carotene as examples. We found that PDR11 can efficiently secrete terpenoids with binding affinities lower than -9.0 kcal/mol. Combining the computer-based prediction and experimental verification, we proved that binding affinity is a reliable parameter to screen exporter substrates and might potentially enable rapid screening of exporters for natural products in microbial cell factories.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Terpenos/metabolismo , Simulação de Acoplamento Molecular , Trifosfato de Adenosina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Cancer Sci ; 114(6): 2569-2583, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36880750

RESUMO

The clinical outcome of resectable non-small-cell lung cancer (NSCLC) patients receiving neoadjuvant chemoimmunotherapy is good but varies greatly. In addition, the pathological response after neoadjuvant chemoimmunotherapy is significantly associated with survival outcomes. The aim of this retrospective study was to identify which population of patients with locally advanced and oligometastatic NSCLC has a favorable pathological response after neoadjuvant chemoimmunotherapy. NSCLC patients treated with neoadjuvant chemoimmunotherapy were enrolled between February 2018 and April 2022. Data on clinicopathological features were collected and evaluated. Multiplex immunofluorescence was performed on pre-treatment puncture specimens and surgically resected specimens. In total, 29 patients with stages III and IV locally advanced or oligometastatic NSCLC who received neoadjuvant chemoimmunotherapy and R0 resection were enrolled. The results showed that 55% (16/29) of patients had a major pathological response (MPR) and 41% (12/29) of patients had a complete pathological response (pCR). In the stroma area of the pre-treatment specimen, the higher infiltration of CD3+ PD-L1+ tumor-infiltrating lymphocytes (TILs) and the lower infiltration of CD4+ and CD4+ FOXP3+ TILs were more likely to appear in patients with pCR. However, in the tumor area, the higher infiltration of CD8+ TILs was more likely to appear in patients with non-MPR. In the post-treatment specimen, we found increased infiltration of CD3+ CD8+ , CD8+ GZMB+ , and CD8+ CD69+ TILs and decreased infiltration of PD-1+ TILs both in the stroma and tumor areas. Neoadjuvant chemoimmunotherapy achieved an MPR rate of 55% and induced greater immune infiltration. In addition, we observed that the baseline TILs and their spatial distribution correlate to the pathological response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Terapia Neoadjuvante , Estudos Retrospectivos , Microambiente Tumoral , Linfócitos do Interstício Tumoral , Antígeno B7-H1
17.
Bioresour Technol ; 374: 128819, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36868430

RESUMO

Ursolic acid (UA) and oleanolic acid (OA) have been demonstrated to have promising therapeutic potential as anticancer and bacteriostasis agents. Herein, via the heterologous expression and optimization of CrAS, CrAO, and AtCPR1, the de novo syntheses of UA and OA were achieved with titers of 7.4 and 3.0 mg/L, respectively. Subsequently, metabolic flux was redirected by increasing the cytosolic acetyl-CoA level and tuning the copy numbers of ERG1 and CrAS, thereby affording 483.4 mg/L UA and 163.8 mg/L OA. Furthermore, the lipid droplet compartmentalization of CrAO and AtCPR1 alongside the strengthening of the NADPH regeneration system increased the UA and OA titers to 692.3 and 253.4 mg/L in a shake flask and to 1132.9 and 433.9 mg/L in a 3-L fermenter, which is the highest UA titer reported to date. Overall, this study provides a reference for constructing microbial cell factories that can efficiently synthesize terpenoids.


Assuntos
Ácido Oleanólico , Triterpenos , Saccharomyces cerevisiae/metabolismo , Ácido Oleanólico/metabolismo , Engenharia Metabólica , Triterpenos/metabolismo , Ácido Ursólico
18.
Arch Microbiol ; 205(3): 91, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781487

RESUMO

A novel actinobacterium with antimicrobial activity, designated strain H16431T, was isolated from a sediment sample collected from Dianchi Lake, Yunnan Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain H16431T was most closely related to Nonomuraea rhizosphaerae CGMCC 4.7431T and Nonomuraea guangzhouensis CGMCC 4.7101T (98.1% similarity), but formed a monophyletic clade with Nonomuraea ceibae KCTC 39826T (98.0% similarity). Phylogenomic analysis based on whole-genome sequence showed that strain H16431T formed a separate clade within the genus Nonomuraea. The average nucleotide identity, average amino acid identity, and digital DNA-DNA hybridization values between strain H16431T and its closely related Nonomuraea species were 80.0-81.5%, 71.2-74.6%, and 23.2-25.0%, respectively, which were significantly lower than the widely accepted species-defined threshold. The DNA G + C content was 70.2% based on the whole-genome sequence. The menaquinones were identified as MK-9(H4), MK-9(H6), and MK-9(H2). The major fatty acids were iso-C16:0, 10 methyl-C17:0, and iso-C16:0 2OH. The phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, and phosphatidylinositol. These chemotaxonomic characteristics were corresponded to those of the genus Nonomuraea. On the basis of the taxonomic evidence, strain H16431T represents a novel species of the genus Nonomuraea, for which the name Nonomuraea sediminis sp. nov. is proposed. The type strain is H16431T (=JCM 34852T=CICC 25119T).


Assuntos
Actinomycetales , Anti-Infecciosos , Fosfatidiletanolaminas , Filogenia , RNA Ribossômico 16S/genética , Lagos , DNA Bacteriano/genética , China , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Microbiologia do Solo , Ácido Diaminopimélico/química , Actinomycetales/genética , Fosfolipídeos/química , Ácidos Graxos/química , Vitamina K 2/química
19.
Foods ; 12(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36832896

RESUMO

Baijiu is a popular alcoholic beverage with a long history in China. However, the widespread presence of the ethyl carbamate (EC) carcinogen has raised many food safety concerns. To date, the main precursors of EC and its formation process have not been determined, resulting in difficulty controlling EC in Baijiu. In this study, the main precursors of EC are identified as urea and cyanide during the process of brewing for different flavors of Baijiu, while the dominant stage in which EC formation occurs is during the process of distillation rather than fermentation. In addition, the effects of temperature, pH value, alcohol concentration and metal ions on the formation of EC are confirmed. In the following study, the main precursor of EC is identified as cyanide during the process of distillation, and a combination of optimizing the distillation device and adding copper wire is proposed. Furthermore, the effect of this novel strategy is examined in gaseous reactions between cyanide and ethanol, reducing the concentration of EC by 74.0%. Finally, the feasibility of this strategy is verified in simulated distillations of fermented grains, reducing the formation of EC by 33.7-50.2%. This strategy has great application potential in industrial production.

20.
Eur Arch Otorhinolaryngol ; 280(2): 511-517, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36239785

RESUMO

INTRODUCTION: In the industrialized world, the incidence of Allergic rhinitis (AR), often known as hay fever, and other allergic disorders continues to grow. Recent studies have suggested environmental variables such as bacterial exposures as a potential reason for the rising prevalence of AR. With breakthroughs in our abilities to research the complex crosstalk of bacteria, the gut microbiomes' effect on human development, nutritional requirements, and immunologic disorders has become apparent METHODS: Three search engines, including Scopus, Medline, and PubMed, were searched for related published articles up to and including 1st July 2022. RESULTS: Several studies have investigated links between commensal microbiome alterations and the development of atopic diseases such as asthma and AR. Besides, studies using probiotics for treating AR suggest that they may alleviate symptoms and improve patient's quality of life. CONCLUSION: Research on probiotics and synbiotics for AR suggests they may improve symptoms, quality of life, and laboratory indicators. A better treatment strategy with advantages for patients may be achieved using probiotics, but only if more detailed in vitro and in vivo investigations are conducted with more participants.


Assuntos
Microbioma Gastrointestinal , Probióticos , Rinite Alérgica Sazonal , Rinite Alérgica , Humanos , Qualidade de Vida , Rinite Alérgica/terapia , Rinite Alérgica/diagnóstico , Probióticos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA