Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Stem Cell Res Ther ; 15(1): 328, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334483

RESUMO

BACKGROUND: At present, fat transplantation is widely used in the plastic surgery industry, but the long-term preservation rate of transplanted fat decreases because of complications such as oil cysts due to the inability in macrophages to metabolize absorption. In cell-assisted lipotransfer technology, adipose-derived stem cells (ASCs) can influence the inflammatory response of grafts through the immunoregulation in macrophages, and the lipid metabolism in macrophages plays an important role in this process. Therefore, we hypothesized ASCs could improve the retention rate of fat grafts by regulating the progress of lipid metabolism in macrophages. METHODS: We established fat transplantation and ASC-assisted fat transplantation model in C57BL/6 mice in vivo, and bone marrow-derived macrophages cocultured with apoptotic adipocytes were treated with or without ASCs in vitro. Graft retention, tissue structure, fibrosis, macrophage phenotype transformation, lipid deposition, mitochondrial morphology, oxygen consumption rate (OCR), fatty acid ß-oxidation (FAO) level, and ATP production were assessed. Additionally, fat transplantation and ASC-assisted fat transplantation model was treated with etomoxir which inhibits mitochondrial FAO. Macrophages pretreated with etomoxir were co-cultured with apoptotic adipocytes and treated with or without ASCs. The method aboved was used for detection and verification. RESULTS: In vivo, ASC-assisted fat transplantation improved macrophage mitochondrial expression and FAO level, promoted the early transformation of M2 macrophages, reduced the long-term lipid deposition of macrophages, and improved the retention rate of fat grafts. In vitro, ASCs up-regulated the level of mitochondrial FAO, OCR and ATP production in macrophages, reduced lipid deposition of macrophages and promoted M2 macrophages polarization by paracine function. The ability of ASCs in group pretreated with etomoxir to reduce the foaming of macrophages, promote the transformation to M2 macrophages, and improve the retention rate of fat transplantation was weakened. CONCLUSIONS: ASCs increased the retention rate of transplanted fat by upregulating mitochondrial FAO to promote M2 polaration in macrophages. In addition, ASCs up-regulate mitochondrial FAO by paracrine effect to reduce foam cells formation and promote M2 transformation in macrophages in vitro.


Assuntos
Ácidos Graxos , Metabolismo dos Lipídeos , Macrófagos , Camundongos Endogâmicos C57BL , Mitocôndrias , Oxirredução , Animais , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Camundongos , Ácidos Graxos/metabolismo , Regulação para Cima , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Masculino
2.
Atherosclerosis ; 397: 118556, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39222595

RESUMO

BACKGROUND AND AIMS: Atherosclerotic cardiovascular disease complicated by diabetes mellitus (DM) is the leading cause of death in diabetic patients, and it is strongly associated with macrophages and inflammasomes. It has been found that activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is closely associated with phosphatidylinositol 4-phosphate (PI4P) on the trans-Golgi. However, how PI4P and NLRP3 regulate macrophage function and its role in diabetic atherosclerotic plaques is unclear. METHODS: The expression of Pi4p and Nlrp3-inflammasome-related proteins in atherosclerosis in apolipoprotein E-deficient (Apoe-/-) and Apoe-/- DM mice was investigated. Then, Pi4p levels were affected by shRNA-Pi4kb or cDNA-Sac1 plasmid to investigate the effects of changes in Pi4p-related metabolic enzymes on macrophage function. Finally, genetically modified macrophages were injected into diabetic Apoe-/- mice to explore the effects on atherosclerosis. RESULTS: DM promoted plaque progression in atherosclerotic mice and increased expression of Pi4p and Nlrp3 in plaques. In addition, impaired macrophage function induced by high glucose was reversed by transfected shRNA-Pi4kb or cDNA-Sac1 plasmid. Furthermore, decreased levels of Pi4p reduced plaque area in diabetic Apoe-/- mice. CONCLUSIONS: Our data suggests that Pi4p/Nlrp3 in macrophages play an important role in the exacerbation of atherosclerosis in diabetic mice. Pi4p-related metabolizing enzymes (PI4KB and SAC1) may be a potential therapeutic strategy for diabetic atherosclerosis, and macrophage therapy is also a potential treatment.


Assuntos
Aterosclerose , Diabetes Mellitus Experimental , Progressão da Doença , Macrófagos , Placa Aterosclerótica , Transdução de Sinais , Animais , Masculino , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Diabetes Mellitus Experimental/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
3.
Int J Phytoremediation ; : 1-12, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150230

RESUMO

In recent years, heavy metal pollution has become a global environmental problem and poses a great threat to the health of people and ecosystems. Therefore, strategies for the effective remediation of Cd from contaminated soil are urgently needed. In this study, ryegrass was utilized as a remediation plant, and its remediation potential was enhanced through the application of Citric Acid (CA) in conjunction with Bacillus megaterium (B. megaterium). The P3 treatment (CA + Bacillus megaterium) exhibited a significantly higher efficiency in promoting cadmium extraction by ryegrass, resulting in a 1.79-fold increase in shoot cadmium accumulation compared to the control group (CK) with no Bacillus megaterium or CA. Moreover, the P3 treatment led to an increased abundance of Actinobacteriota, Acidobacteriota, and Patescibacteria in the rhizosphere. The concentration of amino derivatives (such as betaine, sulfolithocholylglycine, N-alpha-acetyl-lysine, glycocholic acid, arginyl-threonine) showed significant upregulation following the P3 treatment. In summary, this study proposes a viable approach for phytoremediation of soil contaminated with cadmium by harnessing the mobilizing abilities of soil bacteria.


Our aim was to gain a comprehensive understanding of the mechanisms involved in phytoremediation. These findings contribute to the existing knowledge by providing insights into the mechanism of phytoremediation in Cd-contaminated soil. They are expected to serve as a theoretical foundation for further elucidation of the phytoremediation mechanisms employed in Cd-contaminated soil.

4.
J Cardiovasc Pharmacol ; 84(3): 370-382, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39027976

RESUMO

ABSTRACT: Quercetin is known for its antihypertensive effects. However, its role on hypertensive renal injury has not been fully elucidated. In this study, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and Annexin V staining were used to assess the pathological changes and cell apoptosis in the renal tissues of angiotensin II (Ang II)-infused mice and Ang II-stimulated renal tubular epithelial cell line (NRK-52E). A variety of technologies, including network pharmacology, RNA-sequencing, immunohistochemistry, and Western blotting, were performed to investigate its underlying mechanisms. Network pharmacology analysis identified multiple potential candidate targets (including TP53, Bcl-2, and Bax) and enriched signaling pathways (including apoptosis and p53 signaling pathway). Quercetin treatment significantly alleviated the pathological changes in renal tissues of Ang II-infused mice and reversed 464 differentially expressed transcripts, as well as enriched several signaling pathways, including those related apoptosis and p53 pathway. Furthermore, quercetin treatment significantly inhibited the cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells. In addition, quercetin treatment inhibited the upregulation of p53, Bax, cleaved-caspase-9, and cleaved-caspase-3 protein expression and the downregulation of Bcl-2 protein expression in both renal tissue of Ang II-infused mice and Ang II-stimulated NRK-52E cells. Moreover, the molecular docking results indicated a potential binding interaction between quercetin and TP53. Quercetin treatment significantly attenuated hypertensive renal injury and cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells and by targeting p53 may be one of the potential underlying mechanisms.


Assuntos
Angiotensina II , Anti-Hipertensivos , Apoptose , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Farmacologia em Rede , Quercetina , Transdução de Sinais , Proteína Supressora de Tumor p53 , Quercetina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Masculino , Transdução de Sinais/efeitos dos fármacos , Anti-Hipertensivos/farmacologia , Ratos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , RNA-Seq , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Pressão Sanguínea/efeitos dos fármacos , Hipertensão Renal/metabolismo , Hipertensão Renal/tratamento farmacológico , Hipertensão Renal/patologia , Nefrite
5.
Foods ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38890937

RESUMO

Natural polyphenols have drawbacks such as instability and low bioavailability, which can be overcome by encapsulated slow-release systems. Natural polymer hydrogels are ideal materials for slow-release systems because of their high biocompatibility. In this study, Longzhua mushroom polysaccharide hydrogel (LMPH) was used to encapsulate rambutan peel polyphenols (RPP) and delay their release time to improve their stability and bioavailability. The mechanical properties, rheology, stability, swelling properties, water-holding capacity, RPP loading, and slow-release behavior of LMPH were investigated. The results showed that LMPH has adequate mechanical and rheological properties, high thermal stability, excellent swelling and water-holding capacity, and good self-healing behavior. Increasing the polysaccharide content not only improved the hardness (0.17-1.13 N) and water-holding capacity of LMPH (90.84-99.32%) but also enhanced the encapsulation efficiency of RPP (93.13-99.94%). The dense network structure slowed down the release of RPP. In particular, LMPH5 released only 61.58% at 48 h. Thus, a stable encapsulated slow-release system was fabricated using a simple method based on the properties of LMPH. The developed material has great potential for the sustained release and delivery of biologically active substances.

6.
Transl Oncol ; 46: 102000, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852278

RESUMO

Gastric cancer (GC) has become the first malignant tumor with highest incidence rate and mortality of cancer in China, finding therapeutic targets for gastric cancer is of great significant for improving the survival rate of patients with GC. Recently, many of studies have shown that LncRNAs is involved in multiple biological progresses in the development of GC. This study, we screened for abnormally high expression of LncSHANK3 in GC through the TCGA database, and found that LncSHANK3 sponge adsorbs miR-4530, further competing with MNX1 and binding to miR-4530. We demonstrated the interaction between LncSHANK3 and miR-4530 through luciferase reporting analysis, with miR-4530 negatively regulating MNX1.Through CCK8, colony formation, transwell, and wound healing assays, it was found that LncSHANK3 affects the occurrence of GC through cell proliferation, migration and invasion. In conclusion, LncSHANK3/miR-4530/MNX1 axis is a potential mechanism for the treatment of GC.

7.
J Cancer Res Clin Oncol ; 150(6): 317, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914670

RESUMO

INTRODUCTION: CD24 is a highly glycosylated glycosylphosphatidylinositol anchored membrane protein that plays an important role in tumor progression. The aim of this study was to investigate the effect of abnormal expression of CD24 on the proliferation, migration and invasion of breast cancer (BC) cells, and the molecular mechanism of regulating CD24 expression in breast cancer. METHODOLOGY: The bioinformatics method was used to predict the expression level of CD24 in BC and its relationship with the occurrence and development of BC. IHC, RT-qPCR and WB were used to detect the expression of CD24 in BC tissues and cells. The proliferation of CD24 was evaluated by CCK-8 and colony formation assay, and the migration and invasion of CD24 were evaluated by wound healing and transwell. In addition, the effect of CD24 on the malignancy of BC in vivo was further evaluated by subcutaneous tumorigenesis assay. Molecular mechanisms were measured by luciferase reporter assays, biotin-labeled miRNA pull-down assay, RIP, and western blotting. RESULTS: The results show that CD24 is highly expressed in breast cancer tissues and cell lines, and knockdown of CD24 in vivo and in vitro can inhibit the proliferation, migration and invasion of BC cells. Mechanistically, the transcription factor ZNF460 promotes its expression by binding to the CD24 promoter, and the expression of ZNF460 is regulated by miR-125a-5p, which inhibits its expression by targeting the 3'UTR of ZNF460. In addition, LINC00525 acts as a ceRNA sponge to adsorb miR-125a-5p and regulate its expression. CONCLUSIONS: Overexpression of CD24 is involved in the development and poor prognosis of BC, which can be used as a potential target for the treatment of BC and provide a theoretical basis for the treatment of BC.


Assuntos
Neoplasias da Mama , Antígeno CD24 , Proliferação de Células , Progressão da Doença , MicroRNAs , RNA Longo não Codificante , Humanos , Antígeno CD24/genética , Antígeno CD24/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , MicroRNAs/genética , Animais , Camundongos , RNA Longo não Codificante/genética , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Movimento Celular/genética , Camundongos Endogâmicos BALB C , Prognóstico
8.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38690769

RESUMO

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Assuntos
Adenosina/análogos & derivados , Antivirais , Catepsina A , Pulmão , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Animais , Camundongos , Antivirais/farmacocinética , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Humanos , Catepsina A/metabolismo , Pulmão/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Alanina/metabolismo , Alanina/farmacologia , Permeabilidade , Ariloxifosforamidatos
9.
Transl Oncol ; 46: 101994, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776708

RESUMO

Cervical cancer ranks fourth in women in terms of incidence and mortality. The RNA-binding protein YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2) contributes to cancer progression by incompletely understood mechanisms. We show how YTHDF2 controls the fate of cervical cancer cells and whether YTHDF2 could be a valid target for the therapy of cervical cancer. Sphere formation and alkaline phosphatase staining assays were performed to evaluate tumor stemness of cervical cancer cells following YTHDF2 knockdown. Apoptosis was detected by flow cytometry and TUNEL assay. The compounds 4PBA and SP600125 were used to investigate the correlation between JNK, endoplasmic reticulum stress, tumor stemness, and apoptosis. Data from The Cancer Genome Atlas (TCGA) databases and Gene Expression Omnibus (GEO) revealed that GLI family zinc finger 2 (GLI2) might be the target of YTHDF2. The transcription inhibitor actinomycin D and dual-luciferase reporter gene assays were employed to investigate the association between the GLI2 mRNA and YTHDF2. Nude mouse xenografts were generated to assess the effects of YTHDF2 knockdown on cervical cancer growth in vivo. Knockdown of YTHDF2 up-regulated the expression of GLI2, leading to JNK phosphorylation and endoplasmic reticulum stress. These processes inhibited the proliferation of cervical cancer cells and their tumor cell stemness and promotion of apoptosis. In conclusion, the knockdown of YTHDF2 significantly affects the progression of cervical cancer cells, making it a potential target for treating cervical cancer.

10.
J Med Chem ; 67(11): 9431-9446, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38818879

RESUMO

Synthetic lethality has recently emerged as a new approach for the treatment of mutated genes that were previously considered undruggable. Targeting methionine adenosyltransferase 2A (MAT2A) in cancers with deletion of the methylthioadenosine phosphorylase (MTAP) gene leads to synthetic lethality and thus has attracted significant interest in the field of precise anticancer drug development. Herein, we report the discovery of a series of novel MAT2A inhibitors featuring a pyrazolo[3,4-c]quinolin-4-one skeleton based on structure-based drug design. Further optimization led to compound 39, which has a high potency for inhibiting MAT2A and a remarkable selectivity for MTAP-deleted cancer cell lines. Compound 39 has a favorable pharmacokinetic profile with high plasma exposure and oral bioavailability, and it exhibits significant efficacy in xenograft MTAP-depleted models. Moreover, 39 demonstrates excellent brain exposure with a Kpuu of 0.64 in rats.


Assuntos
Encéfalo , Desenho de Fármacos , Inibidores Enzimáticos , Metionina Adenosiltransferase , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/metabolismo , Humanos , Animais , Relação Estrutura-Atividade , Ratos , Encéfalo/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/síntese química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/síntese química , Camundongos , Masculino , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Aesthet Surg J ; 44(7): NP501-NP518, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38567442

RESUMO

BACKGROUND: Macrophage-mediated inflammatory response in the early post-grafting period restricts fat graft retention. Pyroptosis is a novel type of programmed cell death that extensively participates in inflammatory pathologies. OBJECTIVES: This study sought to determine whether macrophage pyroptosis was activated during the inflammatory phase after fat grafting and to investigate the efficacy of a pyroptosis inhibitor, disulfiram (DSF), in fat graft retention. METHODS: We established a C57BL/6 mice fat grafting model and then analyzed macrophage pyroptosis. DSF (50 mg/kg, every other day) was intraperitoneally injected starting 1 hour before fat grafting and continued for 14 days. An in vitro co-culture system was established in which mouse RAW264.7 macrophages were co-cultured with apoptotic adipocytes to further validate the findings of the in vivo studies and to explore the underlying mechanisms. RESULTS: Here we reported that macrophage pyroptosis was activated in both fat grafts and in vitro co-culture models. DSF was found to be a potent pyroptosis inhibitor, promoting M2 macrophage polarization. In addition, DSF was demonstrated to enhance vascularization and graft retention. CONCLUSIONS: Our results suggested that pyroptosis plays a crucial role in the inflammatory cascade within fat grafts. DSF, being a clinically available drug, could be translated into a clinically effective drug for improving fat graft survival by inhibiting macrophage pyroptosis, therefore inducing M2 macrophage polarization and promoting neovascularization.


Assuntos
Técnicas de Cocultura , Dissulfiram , Inflamassomos , Macrófagos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Piroptose/efeitos dos fármacos , Dissulfiram/farmacologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Células RAW 264.7 , Tecido Adiposo/efeitos dos fármacos , Sobrevivência de Enxerto/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Masculino
12.
J Cancer ; 15(7): 2024-2032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434976

RESUMO

Objective: This study evaluated the efficacy and safety of the gemcitabine and oxaliplatin intrathoracic perfusion chemotherapy (IPCGOR) regimen combined with interleukin-2 (IL-2) for advanced non-small cell lung cancer (NSCLC). Methods: We conducted a retrospective analysis of 460 advanced NSCLC patients from the Yunnan Province Early Cancer Diagnosis and Treatment Project (June 2020-October 2022), assessing the IPCGOR and IL-2 combination. Outcomes were measured based on RECIST 1.1 criteria, focusing on objective response rate (ORR), disease control rate (DCR), median progression-free survival (mPFS), median overall survival (MOS), and treatment safety. Results: The treatment demonstrated an ORR of 67.4%, a DCR of 97.4%, an mPFS of 8.5 months, and an MOS of 12.5 months. 14 patients underwent successful surgery post-treatment. Common adverse reactions were manageable, with no treatment-related deaths reported. Conclusion: The IPCGOR combined with IL-2 regimen shows promising efficacy and a tolerable safety profile for advanced NSCLC. These findings suggest its potential as a reference for treating advanced NSCLC. However, the study's retrospective nature and single-center design pose limitations. Future research should focus on prospective studies, randomized controlled trials, and long-term outcome assessments, particularly in diverse patient subgroups, to further validate and refine the clinical application of this regimen.

13.
Aging (Albany NY) ; 16(1): 285-298, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38180746

RESUMO

Gastric cancer poses a serious threat to human health and affects the digestive system. The lack of early symptoms and a dearth of effective identification methods make diagnosis difficult, with many patients only receiving a definitive diagnosis at a malignant stage, causing them to miss out on optimal therapeutic interventions. Melanoma-associated antigen-A (MAGE-A) is part of the MAGE family and falls under the cancer/testis antigen (CTA) category. The MAGE-A subfamily plays a significant role in tumorigenesis, proliferation and migration. The expression, prognosis and function of MAGE-A family members in GC, however, remain unclear. Our research and screening have shown that MAGE-A11 was highly expressed in GC tissues and was associated with poor patient prognosis. Additionally, MAGE-A11 functioned as an independent prognostic factor in GC through Cox regression analysis, and its expression showed significant correlation with both tumour immune cell infiltration and responsiveness to immunotherapy. Our data further indicated that MAGE-A11 regulated GC cell proliferation and migration. Subsequently, our findings propose that MAGE-A11 may operate as a prognostic factor, having potential as an immunotherapy target for GC.


Assuntos
Proteínas de Neoplasias , Neoplasias Gástricas , Masculino , Humanos , Proteínas de Neoplasias/metabolismo , Antígenos de Neoplasias/metabolismo , Prognóstico , Neoplasias Gástricas/patologia , Imunoterapia , Biomarcadores
14.
Int J Phytoremediation ; 26(3): 382-392, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37578385

RESUMO

Based on the growth-promoting effect of plant growth promoting bacteria on plants and the mobilization of Cd by citric acid, an experiment was designed in which the combined treatment of Bacillus megaterium and citric acid promoted ryegrass to repair Cd-contaminated soil. This study aimed to evaluate the effects of different treatments on the antioxidant enzyme activity, photosynthesis intensity, Cd accumulation, and rhizosphere cadmium migration under cadmium contamination conditions. And the soil morphology and structure changes were studied by infrared spectroscopy FourierTransformInfrared(FT-IR) and scanning electron microscope Energy Dispersive Spectrometer(SEM-EDS) before and after different treatments. The results show that the combined treatment of Bacillus megaterium and citric acid significantly improved the oxidative stress defense and plant photosynthesis and increased of rye biomass. rye biomass 1.28 times higher than CK treatment. Joint treatment significantly increased the amount of shoot accumulation of Cd, 2.31 times higher than CK treatment, increased the migration and accumulation of cadmium. FTIR and SEM-EDS also showed that the organic constituents such as O-H, C-O and C-N in soils as a major mechanism for mobilization of the heavy metal Cd. Thus, the combined treatment of Bacillus megaterium and citric acid can promote plant growth, improve the damage to ryegrass caused by single organic acid addition, and improve the plant extraction efficiency, which is a feasible way to repair Cd-contaminated soil through activated extraction system.


The novelty of this study is the combined application of bacteria and chelating agents to ryegrass to improve phytoremediation efficiency. Bacillus giganosus has a good role in promoting the growth of ryegrass. As citrate, a small molecule chelate, can activate heavy metal cadmium and detoxify heavy metals, so it was selected. This study revealed in detail the response of ryegrass to the heavy metal Cd after exogenous addition of Bacillus gigansus and citrate, which is important for the application of cadmium removal by phytoremediation.


Assuntos
Lolium , Metais Pesados , Poluentes do Solo , Cádmio/metabolismo , Biodegradação Ambiental , Lolium/metabolismo , Ácido Cítrico/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes do Solo/metabolismo , Metais Pesados/análise , Solo/química , Bactérias/metabolismo
15.
ACS Pharmacol Transl Sci ; 6(10): 1340-1346, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854623

RESUMO

The ProTide prodrug design is a powerful tool to improve cell permeability and enhance the intracellular activation of nucleotide antiviral analogues. Previous in vitro studies showed that the activation of ProTide prodrugs varied in different cell lines. In the present study, we investigated the activation profiles of two antiviral prodrugs tenofovir alafenamide (TAF) and sofosbuvir (SOF) in five cell lines commonly used in antiviral research, namely, Vero E6, Huh-7, Calu-3, A549, and Caco-2. We found that TAF and SOF were activated in a cell-dependent manner with Vero E6 being the least efficient and Huh-7 being the most efficient cell line for activating the prodrugs. We also demonstrated that TAF was activated at a significantly higher rate than SOF. We further analyzed the protein expressions of the activating enzymes carboxylesterase 1, cathepsin A, histidine triad nucleotide-binding protein 1, and the relevant drug transporters P-glycoprotein and organic anion-transporting polypeptides 1B1 and 1B3 in the cell lines using the proteomics data extracted from the literature and proteome database. The results revealed significant differences in the expression patterns of the enzymes and transporters among the cell lines, which might partially contribute to the observed cell-dependent activation of TAF and SOF. These findings highlight the variability of the abundance of activating enzymes and transporters between cell lines and emphasize the importance of selecting appropriate cell lines for assessing the antiviral efficacy of nucleoside/nucleotide prodrugs.

16.
Molecules ; 28(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570716

RESUMO

Lung cancer seriously threatens human health. To explore the molecular mechanism of 20(S)-Protopanaxadiol (PPD) on human non-small cell lung cancer cells, we investigated the transcriptional profile of PPD-treated NCI-H1299 cells. Cell proliferation, cell cycle, and apoptosis were detected using cell counting kit-8 and flow cytometry, respectively. Differentially expressed genes (DEGs) between PPD-treated and untreated cells were determined using RNA sequencing and bioinformatic analysis. Protein phosphorylation was detected using Western blotting. Data of mRNA expression profiles of lung cancer were from The Cancer Genome Atlas (TCGA) and analyzed using R software version 4.3.1. PPD showed an inhibitory effect on the proliferation of NCI-H1299 cells and induced apoptosis. There were 938 upregulated genes and 466 downregulated genes in PPD-treated cells, and DEGs were primarily enriched in the MAPK signaling pathway. The detection of phosphorylation revealed that the phosphorylation of ERK and p38 MAPK was significantly reduced in PPD-treated cells. Further comparison of PPD-regulated DEGs with clinical data of lung adenocarcinoma demonstrated that most downregulated genes in tumor tissues were upregulated in PPD-treated cells or vice versa. Two PPD-downregulated genes HSPA2 and EFNA2 were associated with patients' overall survival. Therefore, PPD could inhibit NCI-H1299 cells by affecting gene expression and regulating ERK and p38 MAPK pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Perfilação da Expressão Gênica
17.
Acta Pharmacol Sin ; 44(11): 2282-2295, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37280363

RESUMO

Abnormalities of FGFR1 have been reported in multiple malignancies, suggesting FGFR1 as a potential target for precision treatment, but drug resistance remains a formidable obstacle. In this study, we explored whether FGFR1 acted a therapeutic target in human T-cell acute lymphoblastic leukemia (T-ALL) and the molecular mechanisms underlying T-ALL cell resistance to FGFR1 inhibitors. We showed that FGFR1 was significantly upregulated in human T-ALL and inversely correlated with the prognosis of patients. Knockdown of FGFR1 suppressed T-ALL growth and progression both in vitro and in vivo. However, the T-ALL cells were resistant to FGFR1 inhibitors AZD4547 and PD-166866 even though FGFR1 signaling was specifically inhibited in the early stage. Mechanistically, we found that FGFR1 inhibitors markedly increased the expression of ATF4, which was a major initiator for T-ALL resistance to FGFR1 inhibitors. We further revealed that FGFR1 inhibitors induced expression of ATF4 through enhancing chromatin accessibility combined with translational activation via the GCN2-eIF2α pathway. Subsequently, ATF4 remodeled the amino acid metabolism by stimulating the expression of multiple metabolic genes ASNS, ASS1, PHGDH and SLC1A5, maintaining the activation of mTORC1, which contributed to the drug resistance in T-ALL cells. Targeting FGFR1 and mTOR exhibited synergistically anti-leukemic efficacy. These results reveal that FGFR1 is a potential therapeutic target in human T-ALL, and ATF4-mediated amino acid metabolic reprogramming contributes to the FGFR1 inhibitor resistance. Synergistically inhibiting FGFR1 and mTOR can overcome this obstacle in T-ALL therapy.


Assuntos
Aminoácidos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Fator 4 Ativador da Transcrição/metabolismo
18.
Viruses ; 15(4)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37113009

RESUMO

Chrysanthemum (Chrysanthemum morifolium) is an important ornamental and medicinal plant suffering from many viruses and viroids worldwide. In this study, a new carlavirus, tentatively named Chinese isolate of Carya illinoinensis carlavirus 1 (CiCV1-CN), was identified from chrysanthemum plants in Zhejiang Province, China. The genome sequence of CiCV1-CN was 8795 nucleotides (nt) in length, with a 68-nt 5'-untranslated region (UTR) and a 76-nt 3'-UTR, which contained six predicted open reading frames (ORFs) that encode six corresponding proteins of various sizes. Phylogenetic analyses based on full-length genome and coat protein sequences revealed that CiCV1-CN is in an evolutionary branch with chrysanthemum virus R (CVR) in the Carlavirus genus. Pairwise sequence identity analysis showed that, except for CiCV1, CiCV1-CN has the highest whole-genome sequence identity of 71.3% to CVR-X6. At the amino acid level, the highest identities of predicted proteins encoded by the ORF1, ORF2, ORF3, ORF4, ORF5, and ORF6 of CiCV1-CN were 77.1% in the CVR-X21 ORF1, 80.3% in the CVR-X13 ORF2, 74.8% in the CVR-X21 ORF3, 60.9% in the CVR-BJ ORF4, 90.2% in the CVR-X6 and CVR-TX ORF5s, and 79.4% in the CVR-X21 ORF6. Furthermore, we also found a transient expression of the cysteine-rich protein (CRP) encoded by the ORF6 of CiCV1-CN in Nicotiana benthamiana plants using a potato virus X-based vector, which can result in a downward leaf curl and hypersensitive cell death over the time course. These results demonstrated that CiCV1-CN is a pathogenic virus and C. morifolium is a natural host of CiCV1.


Assuntos
Carlavirus , Chrysanthemum , Genoma Viral , Carlavirus/genética , Filogenia , Nucleotídeos , China , Fases de Leitura Aberta
19.
Biomed Pharmacother ; 158: 114203, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36916429

RESUMO

BACKGROUND: Neferine exhibits therapeutic effects on anti-hypertension. However, the effect of neferine on hypertensive vascular remodeling remains unexplored. Therefore, the current study was to investigate the effect of neferine on hypertensive vascular remodeling and its underlying mechanisms. METHODS: Total 30 male spontaneously hypertensive rats (SHRs) were divided randomly into five groups, including SHR, Neferine-L (2.5 mg/kg/day), Neferine-M (5 mg/kg/day), Neferine-H (10 mg/kg/day), and Valsartan (10 mg/kg/day) groups (n = 6 for each group). Wistar Kyoto (WKY) rats were set as control group (n = 6). Noninvasive blood pressure system, ultrasound, hematoxylin and eosin staining, masson trichrome staining were used to detect the blood pressure, pulse wave velocity (PWV), pathological changes and collagen content in abdominal aortas of SHRs. RNA-sequencing and immunohistochemistry(IHC) analyses were used to identify and verify the differentially expressed transcripts and activation of associated signaling pathways in SHRs. RESULTS: Various concentrations of neferine or valsartan treatment substantially reduced the elevation of blood pressure, PWV, and abdominal aortic thickening of SHRs. RNA-sequencing and KEGG analyses recognized 441 differentially expressed transcripts and several enriched pathways (including PI3K/AKT and TGF-ß/Smad2/3 signaling pathways) after neferine treatment. Masson trichromatic staining and IHC analysis demonstrated that neferine treatment decreased the collagen content and down-regulated the protein expression of PCNA, collagen I & III, and fibronectin, as well as p-PI3K, p-AKT, TGF-ß1 and p-Smad2/3 in abdominal aortic tissues of SHRs. CONCLUSION: Neferine treatment exhibits therapeutic effects on anti-hypertension and reduces vascular remodeling, as well as suppresses the abnormal activation of multiple signaling pathways, including PI3K/AKT and TGF-ß1/Smad2/3 pathways.


Assuntos
Hipertensão , Fator de Crescimento Transformador beta1 , Ratos , Animais , Masculino , Ratos Endogâmicos SHR , Fator de Crescimento Transformador beta1/metabolismo , Ratos Endogâmicos WKY , Remodelação Vascular , Análise de Onda de Pulso , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão/metabolismo , Pressão Sanguínea , Transdução de Sinais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Valsartana/farmacologia , Valsartana/uso terapêutico , Colágeno/metabolismo , RNA
20.
Ecotoxicol Environ Saf ; 255: 114766, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924559

RESUMO

With the increase in cadmium (Cd) release into the environment, it is necessary to find appropriate solutions to reduce soil Cd pollution. Microorganisms are a green and effective means for the remediation of Cd-contaminated soil. In this study, in a Cd-contaminated farmland, we screened and identified novel Cd-resistant strains, Paenarthrobactor nitroguajacolicus, Lysinibacillus fusiformis, Bacillus licheniformis, and Methyllobacium brachiatum, with minimum inhibitory concentrations of 100, 100, 50, and 50 mg/L, respectively, and added them each to pots containing Cd-contaminated rape plants to explore their remediation ability. The results showed that treatment with each of the four strains significantly increased the abundance of Nitrospirae, Firmicutes, Verrucomicrobia, and Patescibacterium in the rhizosphere soil of the plants. This led to changes in soil physical and chemical indices; pH; and available phosphorus, urease, and catalase activities, which were significantly negatively correlated with bioavailable Cd, reducing 28.74-58.82 % Cd enrichment to plants and 23.72-43.79 % Cd transport within plants, and reducing 5.52-10.68 % available cadmium in soil, effectively reducing the biotoxicity of Cd. Thus, this study suggests microbial remediation as a reliable option, forming a basis for the remediation of Cd-contaminated soil.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Bactérias , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA