Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(26): 33005-33020, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38900067

RESUMO

Inspired by the crucial role of matrix vesicles (MVs), a series of biomimetic vesicles (BVs) fabricated by calcium glycerophosphate (CaGP) modified polyurethane were designed to mediate the mineralization through in situ enzyme activation for bone therapy. In this study, alkaline phosphatase (ALP) was harbored in the porous BVs by adsorption (Ad-BVs) or entrapment (En-BVs). High encapsulation of ALP on En-BVs was effectively self-activating by calcium ions of CaGP-modified PU that specifically hydrolyzed the organophosphorus (CaGP) to inorganic phosphate, thus promoting the formation of the highly oriented bone-like apatite in vitro. Enzyme-catalyzed kinetics confirms the regulation of apatite crystallization by the synergistic action of self-activated ALP and the confined microcompartments of BVs. This leads to a supersaturated microenvironment, with the En-BVs group exhibiting inorganic phosphate (Pi) levels 4.19 times higher and Ca2+ levels 3.67 times higher than those of simulated body fluid (SBF). Of note, the En-BVs group exhibited excellent osteo-inducing differentiation of BMSCs in vitro and the highest maturity with reduced bone loss in rat femoral defect in vivo. This innovative strategy of biomimetic vesicles is expected to provide valuable insights into the enzyme-activated field of bone therapy.


Assuntos
Fosfatase Alcalina , Materiais Biomiméticos , Calcificação Fisiológica , Animais , Ratos , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Glicerofosfatos/química , Poliuretanos/química , Poliuretanos/farmacologia
2.
J Mater Chem B ; 12(28): 6927-6939, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38904166

RESUMO

Radiotherapy is a pivotal means of cancer treatment, but it often leads to radiation dermatitis, a skin injury caused by radiation-induced excess reactive oxygen species (ROS). Scavenging free radicals in the course of radiation therapy will be an effective means to prevent radiation dermatitis. This study demonstrates a novel double network hydrogel doped with MoS2 nanosheets for the prevention of radiation-induced dermatitis. The resultant SPM hydrogel constructed from polyacrylamide (PAM) and sodium alginate (SA) nanofiber presented favorable mechanical and adhesion properties. It could conform well to the human body's irregular contours without secondary dressing fixation, making it suitable for skin protection applications. The in vitro and in vivo experiments showed that the antioxidant properties conferred by MoS2 nanosheets enable SPM to effectively mitigate excessive ROS and reduce oxidative stress, thereby preventing radiation dermatitis caused by oxidative damage. Biosafety assessments indicated good biocompatibility of the composite hydrogel, suggesting SPM's practicality and potential as an external dressing for skin radiation protection.


Assuntos
Alginatos , Antioxidantes , Hidrogéis , Radiodermite , Hidrogéis/química , Hidrogéis/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Radiodermite/prevenção & controle , Radiodermite/tratamento farmacológico , Animais , Alginatos/química , Alginatos/farmacologia , Humanos , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Camundongos , Molibdênio/química , Molibdênio/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Adesivos/química , Adesivos/farmacologia , Tamanho da Partícula
3.
ACS Biomater Sci Eng ; 10(6): 4073-4084, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38752228

RESUMO

Due to the decomposition temperature of Polyamide 66 (PA66) in the environment is close to its thermoforming temperature, it is difficult to construct porous scaffolds of PA66/nanohydroxyapatite (PA66/HAp) by fused deposition modeling (FDM) three-dimensional (3D) printing. In this study, we demonstrated for the first time a method for 3D printing PA66/HAp composites at room temperature, prepared PA66/HAp printing ink using a mixed solvent of formic acid/dichloromethane (FA/DCM), and constructed a series of composite scaffolds with varying HAp content. This printing system can print composite materials with a high HAp content of 60 wt %, which is close to the mineral content in natural bone. The physicochemical evaluation presented that the hydroxyapatite was uniformly distributed within the PA66 matrix, and the PA66/HAp composite scaffold with 30 wt % HAp content exhibited optimal mechanical properties and printability. The results of in vitro cell culture experiments indicated that the incorporation of HAp into the PA66 matrix significantly improved the cell adhesion, proliferation, and osteogenic differentiation of bone marrow stromal cells (BMSCs) cultured on the scaffold. In vivo animal experiments suggested that the PA66/HAp composite material with 30 wt % HAp content had the best structural maintenance and osteogenic performance. The three-dimensional PA66/HAp composite scaffold prepared by low temperature printing in the current study holds great potential for the repair of large-area bone defects.


Assuntos
Durapatita , Células-Tronco Mesenquimais , Nylons , Impressão Tridimensional , Alicerces Teciduais , Durapatita/química , Alicerces Teciduais/química , Nylons/química , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Temperatura , Adesão Celular
4.
Front Neurol ; 15: 1275192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434200

RESUMO

Objective: This study aimed to evaluate the effectiveness and safety of auricular acupuncture (AA) on postoperative analgesia, the degree of postoperative nausea, and the effect of inflammation after total knee arthroplasty (TKA). Methods: This was a single-center, placebo-controlled, randomized clinical trial. In total, 96 patients were randomly divided into an AA group with an indwelling intradermal needle (n = 48) and a sham auricular acupuncture (SAA) group with a non-penetrating placebo needle (n = 48). Intra-spinal anesthesia was adopted in both groups during surgery, and an epidural analgesic pump was implanted after surgery for 48 h. The primary outcome was the post-surgery visual analog score (VAS) of resting and movement states (at 6, 12 h and 1, 2, 3, 5, and 7 days). The secondary outcomes included additional doses of analgesic injection during the treatment, C-reactive protein (CRP) levels, erythrocyte sedimentation rate (ESR), and white blood cell (WBC) count on the 1st, 3rd, and 7th day after the operation, nausea on the 1st, 2nd, and 3rd day after the operation, the Hospital for Special Surgery Knee Score (HSS) on the 2nd and 12th week after the operation, and adverse events. Results: The VAS in the AA group at 6 h, 12 h, 2, 3, and 5 days after surgery were lower than those of the SAA group (p < 0.05). Among the secondary outcomes, the total dose of additional analgesic injection after surgery in the AA group was lower than that in the SAA group (p < 0.05). The serum CRP on the 1st day after operation in the AA group was lower than that in the SAA group (p < 0.05). The degree of nausea on 2nd day after surgery in the AA group was lower than that in the SAA group (p < 0.05). There was no significant difference in other outcomes (p > 0.05). Conclusion: In this study, AA was shown to be an effective and safe complementary and alternative therapy for pain relief after TKA, which was able to reduce the total postoperative dose of additional painkillers, decrease serum CRP 1 day after surgery, and improve the degree of postoperative nausea. Clinical trial registration: www.chictr.org.cn, ChiCTR2100054403.

5.
Acta Biomater ; 177: 91-106, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311198

RESUMO

Designing scaffolds that can regulate the innate immune response and promote vascularized bone regeneration holds promise for bone tissue engineering. Herein, electrospun scaffolds that combined physical and biological cues were fabricated by anchoring reparative M2 macrophage-derived exosomes onto topological pore structured nanofibrous scaffolds. The topological pore structure of the fiber and the immobilization of exosomes increased the nanoscale roughness and hydrophilicity of the fibrous scaffold. In vitro cell experiments showed that exosomes could be internalized by target cells to promote cell migration, tube formation, osteogenic differentiation, and anti-inflammatory macrophage polarization. The activation of fibrosis, angiogenesis, and macrophage was elucidated during the exosome-functionalized fibrous scaffold-mediated foreign body response (FBR) in subcutaneous implantation in mice. The exosome-functionalized nanofibrous scaffolds also enhanced vascularized bone formation in a critical-sized rat cranial bone defect model. Importantly, histological analysis revealed that the biofunctional scaffolds regulated the coupling effect of angiogenesis, osteoclastogenesis, and osteogenesis by stimulating type H vessel formation. This study elaborated on the complex processes within the cell microenvironment niche during fibrous scaffold-mediated FBR and vascularized bone regeneration to guide the design of implants or devices used in orthopedics and maxillofacial surgery. STATEMENT OF SIGNIFICANCE: How to design scaffold materials that can regulate the local immune niche and truly achieve functional vascularized bone regeneration still remain an open question. Here, combining physical and biological cues, we proposed new insight to cell-free and growth factor-free therapy, anchoring reparative M2 macrophage-derived exosomes onto topological pore structured nanofibrous scaffolds. The exosomes functionalized-scaffold system mitigated foreign body response, including excessive fibrosis, tumor-like vascularization, and macrophage activation. Importantly, the biofunctional scaffolds regulated the coupling effect of angiogenesis, osteoclastogenesis, and osteogenesis by stimulating type H vessel formation.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Ratos , Camundongos , Animais , Osteogênese , Alicerces Teciduais/química , Regeneração Óssea , Engenharia Tecidual , Diferenciação Celular , Macrófagos , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA