Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 161: 250-264, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863680

RESUMO

Dysfunction of the intestinal mucosal immune system and dysbiosis of the intestinal microflora can induce inflammatory bowel disease. However, drug-mediated clinical treatment remains a challenge due to its poor therapeutic efficacy and severe side effects. Herein, a ROS scavenging and inflammation-directed nanomedicine is designed and fabricated by coupling polydopamine nanoparticles with mCRAMP, an antimicrobial peptide, while wrapping macrophage membrane in the outer layer. The designed nanomedicine reduced the secretion of pro-inflammatory cytokines and elevate the expression of anti-inflammatory cytokine in vivo and in vitro inflammation models, demonstrating its significant ability of improving inflammatory responses. Importantly, the macrophage membrane encapsulated nanoparticles exhibit the obviously enhanced targeting performance in local inflamed tissues. Furthermore, the 16S rRNA sequencing of fecal microorganisms showed that probiotics increased and pathogenic bacteria were inhibited after oral delivery the nanomedicine, indicating that the designed nano platform played a significant role in optimizing intestinal microbiome. Taken together, the designed nanomedicine are not only easy to prepare and exhibit high biocompatibility, but also show the inflammatory targeting property, anti-inflammatory function and positive regulation of intestinal flora, thus providing a new idea for the intervention and treatment of colitis. STATEMENT OF SIGNIFICANCE: Inflammatory bowel disease (IBD), a chronic and intractable disease, may lead to colon cancer in severe cases without effective treatment. However, clinical drugs are largely ineffective owing to insufficient therapeutic efficacies and side effects. Herein, we constructed a biomimetic polydopamine nanoparticle for oral administration to treat the IBD by modulating mucosal immune homeostasis and optimizing intestinal microorganisms. In vitro and in vivo experiments showed that the designed nanomedicine not only exhibits the anti-inflammatory function and inflammatory targeting property but also positively regulate the gut microflora. Taken together, the designed nanomedicine combined immunoregulation and intestinal microecology modulation to significantly enhance the therapeutic effect on colitis in mice, thus providing a new approach for the clinical treatment of colitis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Nanopartículas , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , RNA Ribossômico 16S/genética , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Inflamação/tratamento farmacológico , Colite/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Macrófagos/metabolismo , Citocinas , Sulfato de Dextrana/uso terapêutico
2.
J Phys Chem Lett ; 11(10): 4173-4178, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32356665

RESUMO

Substrate rigidity modulates cell mechanics, which affect cell migration and proliferation. Quantifying the effects of substrate rigidity on cancer cell mechanics requires a quantifiable parameter that can be measured for individual cells, as well as a substrate platform with rigidity being the only variable. Here we used single-cell force spectroscopy to pull cancer cells on substrates varying only in rigidity, and extracted a parameter from the force-distance curves to be used to quantify the properties of membrane tethers. Our results showed that tether force increases with substrate rigidity until it reaches its asymptotic limit. The variations are similar for all three cancer cell lines studied, and the largest change occurs in the rigidity regions of softer tissues, indicating a universal response of cancer cell elasticity to substrate rigidity.


Assuntos
Membrana Celular/química , Análise de Célula Única , Linhagem Celular Tumoral , Elasticidade , Humanos , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA