Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5849, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992001

RESUMO

The effective isolation of rare target cells, such as circulating tumor cells, from whole blood is still challenging due to the lack of a capturing surface with strong target-binding affinity and non-target-cell resistance. Here we present a solution leveraging the flexibility of bacterial virus (phage) nanofibers with their sidewalls displaying target circulating tumor cell-specific aptamers and their ends tethered to magnetic beads. Such flexible phages, with low stiffness and Young's modulus, can twist and adapt to recognize the cell receptors, energetically enhancing target cell capturing and entropically discouraging non-target cells (white blood cells) adsorption. The magnetic beads with flexible phages can isolate and count target cells with significant increase in cell affinity and reduction in non-target cell absorption compared to magnetic beads having rigid phages. This differentiates breast cancer patients and healthy donors, with impressive area under the curve (0.991) at the optimal detection threshold (>4 target cells mL-1). Immunostaining of captured circulating tumor cells precisely determines breast cancer subtypes with a diagnostic accuracy of 91.07%. Our study reveals the power of viral mechanical attributes in designing surfaces with superior target binding and non-target anti-fouling.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Neoplasias da Mama/virologia , Feminino , Aptâmeros de Nucleotídeos/metabolismo , Nanofibras/química , Linhagem Celular Tumoral , Bacteriófagos/genética
2.
Clin Immunol ; 255: 109729, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562723

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease characterized by the immune system's failure to maintain self-tolerance, resulting in the autoimmune destruction of pancreatic beta cells. Although T1D has conventionally been viewed as a T-cell-dominant disease, recent research has emphasized the contribution of B cells in the onset of the disease. However, the mechanism underlying aberrant B cell responses remains unknown. B cell metabolism is a crucial prerequisite for B cell function and the development of adaptive immune responses. Here, we investigated the metabolic features of B cells, first in a cross-sectional cohort and subsequently in non-obese diabetic (NOD) mice, and revealed that there is an increased frequency of high-glucose-avidity (2-NBDGhigh) B cell population that may contribute to T1D progression. Further characterization of the metabolic, transcriptional and functional phenotype of B cells in NOD mice found that elevated glucose avidity is associated with a greater capacity for co-stimulation, proliferation and inflammatory cytokine production. Mechanistically, elevated Myc signaling orchestrated the glucose metabolism and the pro-inflammatory response of B cells in T1D. In vitro experiments demonstrated that pharmacological inhibition of glucose metabolism using metformin and 2-DG reduced pro-inflammatory cytokine production and B cell proliferation. Moreover, the combination of these inhibitors successfully delayed insulitis development, onset of diabetes, and improved high blood glucose levels in streptozotocin (STZ)-induced diabetic mice model. Taken together, our work has uncovered these high-glucose-avidity B cells as novel adjuvant diagnostic and therapeutic targets for T1D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Humanos , Camundongos , Animais , Camundongos Endogâmicos NOD , Estudos Transversais , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/uso terapêutico , Transdução de Sinais , Citocinas , Glucose
3.
Front Bioeng Biotechnol ; 11: 1162089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091342

RESUMO

Extracellular vesicles (EVs) are nanoscale extracellular particles that have received widespread scientific attention for carrying a variety of biomolecules such as nucleic acids and proteins and participating in the process of intercellular information exchange, making them become a research hotspot due to their potential diagnostic value. Breast cancer is the leading cause of cancer-related death in women, approximately 90% of patient deaths are due to metastasis complications. Brain metastasis is an important cause of mortality in breast cancer patients, about 10-15% of breast cancer patients will develop brain metastasis. Therefore, early prevention of brain metastasis and the development of new treatments are crucial. Small EVs have been discovered to be involved in the entire process of breast cancer brain metastasis (BCBM), playing an important role in driving organ-specific metastasis, forming pre-metastatic niches, disrupting the blood-brain barrier, and promoting metastatic tumor cell proliferation. We summarize the mechanisms of small EVs in the aforementioned pathological processes at the cellular and molecular levels, and anticipate their potential applications in the treatment of breast cancer brain metastasis, with the hope of providing new ideas for the precise treatment of breast cancer brain metastasis.

4.
ChemMedChem ; 18(5): e202200651, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585386

RESUMO

Innovations in synthetic chemistry have a profound impact on the drug discovery process, and will always be a necessary driver of drug development. As a result, it is of significance to develop novel simple and effective synthetic installation of medicinal modules to promote drug discovery. Herein, we have developed a NaClO-mediated cross installation of indoles and azoles, both of which are frequently encountered in drugs and natural products. This effective toolbox provides a convenient synthetic route to access a library of N-linked 2-(azol-1-yl) indole derivatives, and can be used for late-stage modification of drugs, natural products and peptides. Moreover, biological screening of the library has revealed that several adducts showed promising anticancer activities against A549 and NCI-H1975 cells, which give us a hit for anticancer drug discovery.


Assuntos
Azóis , Produtos Biológicos , Indóis , Descoberta de Drogas
5.
Org Lett ; 24(50): 9248-9253, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36508502

RESUMO

We have developed a method of introducing biological oxime ether fragments into peptides by CuI-catalyzed late-stage modification and functionalization of peptides, utilizing their acid moiety and varied 2H-azirines. As a result of its mild conditions, high atom economy, moderate yield, and excellent functional-group tolerance, the method can provide access to late-stage peptide modification and functionalization at their acid sites both in the homogeneous phase and on resins in SPPS, providing a new tool kit for peptide functionalization, diversification, and fluorescent labeling.


Assuntos
Cobre , Éteres , Ácidos Carboxílicos , Oximas , Peptídeos , Catálise
6.
Hum Mol Genet ; 31(21): 3652-3671, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35388883

RESUMO

Wilson's disease (WD) is a copper metabolic disorder caused by a defective ATP7B function. Conventional therapies cause severe side effects and significant variation in efficacy, according to cohort studies. Thus, exploring new therapeutic approaches to prevent progression to liver failure is urgent. To study the physiology and pathology of WD, immortalized cell lines and rodent WD models have been used conventionally; however, a large gap remains among different species as well as in genetic backgrounds among individuals. We generated induced pluripotent stem cells (iPSCs) from four WD patients carrying compound heterozygous mutations in the ATP7B gene. ATP7B loss- and gain-of-functions were further manifested with ATP7B-deficient iPSCs and heterozygously corrected R778L WD patient-derived iPSCs using CRISPR-Cas9-based gene editing. Although the expression of ATP7B protein varied among WD-specific hepatocytes differentiated from these iPSCs, the expression and secretion of ceruloplasmin (Cp), a downstream copper carrier in plasma, were consistently decreased in WD patient-derived and ATP7B-deficient hepatocytes. A transcriptome analysis detected abnormalities in the retinoid signaling pathway and lipid metabolism in WD-specific hepatocytes. Drug screening using WD patient-derived hepatocytes identified retinoids as promising candidates for rescuing Cp secretion. All-trans retinoic acid also alleviates reactive oxygen species production induced by lipid accumulation in WD-specific hepatocytes treated with oleic acid. These patient-derived iPSC-based hepatic models function as effective platforms for the development of potential therapeutics for hepatic steatosis in WD and other fatty liver diseases.


Assuntos
Degeneração Hepatolenticular , Humanos , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/genética , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Cobre/metabolismo , Retinoides/metabolismo , Retinoides/uso terapêutico , ATPases Transportadoras de Cobre/genética , Hepatócitos/metabolismo , Estresse Oxidativo , Mutação
7.
Org Lett ; 24(5): 1169-1174, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34994572

RESUMO

Herein, we explored an unprecedented mild, nonirritating, conveniently available, and recyclable coupling reagent NDTP, which could activate the carboxylic acids via acyl thiocyanide and enable the rapid amide and peptide synthesis at very mild conditions. In addition, the methodology was compatible with Fmoc-SPPS, which may provide an alternative to peptide manufacturing.


Assuntos
Amidas/síntese química , Peptídeos/síntese química , Amidas/química , Ácidos Carboxílicos/química , Estrutura Molecular , Peptídeos/química , Estereoisomerismo , Tiocianatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA