Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843276

RESUMO

The loss of contact inhibition is a key step during carcinogenesis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is an important regulator of cell growth in a cell density-dependent manner. However, how Hippo signaling senses cell density in this context remains elusive. Here, we report that high cell density induced the phosphorylation of spectrin α chain, nonerythrocytic 1 (SPTAN1), a plasma membrane-stabilizing protein, to recruit NUMB endocytic adaptor protein isoforms 1 and 2 (NUMB1/2), which further sequestered microtubule affinity-regulating kinases (MARKs) in the plasma membrane and rendered them inaccessible for phosphorylation and inhibition of the Hippo kinases sterile 20-like kinases MST1 and MST2 (MST1/2). WW45 interaction with MST1/2 was thereby enhanced, resulting in the activation of Hippo signaling to block YAP activity for cell contact inhibition. Importantly, low cell density led to SPTAN1 dephosphorylation and NUMB cytoplasmic location, along with MST1/2 inhibition and, consequently, YAP activation. Moreover, double KO of NUMB and WW45 in the liver led to appreciable organ enlargement and rapid tumorigenesis. Interestingly, NUMB isoforms 3 and 4, which have a truncated phosphotyrosine-binding (PTB) domain and are thus unable to interact with phosphorylated SPTAN1 and activate MST1/2, were selectively upregulated in liver cancer, which correlated with YAP activation. We have thus revealed a SPTAN1/NUMB1/2 axis that acts as a cell density sensor to restrain cell growth and oncogenesis by coupling external cell-cell contact signals to intracellular Hippo signaling.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Espectrina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP , Fatores de Transcrição/metabolismo , Carcinogênese/genética
2.
Gene ; 877: 147539, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279866

RESUMO

Short tandem repeats (STRs) are a class of abundant structural or functional elements in the human genome and exhibit a polymorphic nature of repeat length and genetic variation within human populations. Interestingly, STR expansions underlie about 60 neurological disorders. However, "stutter" artifacts or noises render it difficult to investigate the pathogenesis of STR expansions. Here, we systematically investigated STR instability in cultured human cells using GC-rich CAG and AT-rich ATTCT tandem repeats as examples. We found that triplicate bidirectional Sanger sequencing with PCR amplification under proper conditions can reliably assess STR length. In addition, we found that next-generation sequencing with paired-end reads bidirectionally covering STR regions can accurately and reliably assay STR length. Finally, we found that STRs are intrinsically unstable in cultured human cell populations and during single-cell cloning. Our data suggest a general method for accurately and reliably assessing STR length and have important implications in investigating pathogenesis of STR expansion diseases.


Assuntos
Genoma Humano , Repetições de Microssatélites , Humanos , Repetições de Microssatélites/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase
4.
Yi Chuan ; 37(10): 992-1002, 2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-26496751

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system from bacteria and archaea emerged recently as a new powerful technology of genome editing in virtually any organism. Due to its simplicity and cost effectiveness, a revolutionary change of genetics has occurred. Here, we summarize the recent development of DNA fragment editing methods by CRISPR/Cas9 and describe targeted DNA fragment deletions, inversions, duplications, insertions, and translocations. The efficient method of DNA fragment editing provides a powerful tool for studying gene function, regulatory elements, tissue development, and disease progression. Finally, we discuss the prospects of CRISPR/Cas9 system and the potential applications of other types of CRISPR system.


Assuntos
Sistemas CRISPR-Cas , Dano ao DNA , Engenharia Genética/métodos , Genoma/genética , Animais , Aberrações Cromossômicas , DNA/genética , DNA/metabolismo , Humanos , Modelos Genéticos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA