Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(2): 101397, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38307029

RESUMO

Microbes are an integral component of the tumor microenvironment. However, determinants of microbial presence remain ill-defined. Here, using spatial-profiling technologies, we show that bacterial and immune cell heterogeneity are spatially coupled. Mouse models of pancreatic cancer recapitulate the immune-microbial spatial coupling seen in humans. Distinct intra-tumoral niches are defined by T cells, with T cell-enriched and T cell-poor regions displaying unique bacterial communities that are associated with immunologically active and quiescent phenotypes, respectively, but are independent of the gut microbiome. Depletion of intra-tumoral bacteria slows tumor growth in T cell-poor tumors and alters the phenotype and presence of myeloid and B cells in T cell-enriched tumors but does not affect T cell infiltration. In contrast, T cell depletion disrupts the immunological state of tumors and reduces intra-tumoral bacteria. Our results establish a coupling between microbes and T cells in cancer wherein spatially defined immune-microbial communities differentially influence tumor biology.


Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Linfócitos T/patologia , Neoplasias Pancreáticas/patologia , Comunicação Celular , Microambiente Tumoral
2.
Clin Cancer Res ; 29(17): 3514-3525, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37534996

RESUMO

PURPOSE: Determinants of treatment outcomes to chemotherapy-based regimens in metastatic pancreatic ductal adenocarcinoma (PDA) remain ill-defined. Our aim was to examine tissue-based correlates of treatment response and resistance using matched baseline and on-treatment biopsies collected from patients with PDA treated in the first-line metastatic setting. EXPERIMENTAL DESIGN: Patients with treatment-naïve metastatic PDA were enrolled in a Phase II trial (NCT02077881) investigating gemcitabine plus nab-paclitaxel in combination with indoximod, an orally administered small-molecule inhibitor of the IDO pathway. Baseline and on-treatment biopsies (week 8) of metastatic lesions (88% liver) were collected from a cohort of responders (N = 8) and non-responders (N = 8) based on RECIST v1.1 and examined by multiplex IHC and mRNA sequencing. RESULTS: Treatment altered the transcriptional profile of metastatic lesions with a decrease in tumor cell proliferation independent of treatment response. The antiproliferative response was seen in both basal and classical PDA subtypes. PDA subtype was not associated with survival outcomes; instead, genes involved in immune activation distinguished responders from non-responders. Tumor response was associated with an increase in CD3+ and CD8+ T-cell infiltrates into metastatic lesions. A composite of decreased tumor proliferation in response to treatment and increased CD8 T-cell infiltration in metastatic lesions identified responders and associated with a favorable survival outcome. CONCLUSIONS: Our findings suggest that inhibiting cancer cell proliferation alone in PDA is insufficient to produce tumor responses and support a role for tumor-extrinsic mechanisms, such as CD8+ T cells, which combine with the cancer cell proliferation index to define treatment outcomes.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Desoxicitidina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Adenocarcinoma/patologia , Paclitaxel , Albuminas , Linfócitos T CD8-Positivos/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética
3.
Cancer Immunol Res ; 10(7): 800-810, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35507919

RESUMO

Glioblastoma (GBM) is an immunologically "cold" tumor characterized by poor responsiveness to immunotherapy. Standard of care for GBM is surgical resection followed by chemoradiotherapy and maintenance chemotherapy. However, tumor recurrence is the norm, and recurring tumors are found frequently to have acquired molecular changes (e.g., mutations) that may influence their immunobiology. Here, we compared the immune contexture of de novo GBM and recurrent GBM (rGBM) using high-dimensional cytometry and multiplex IHC. Although myeloid and T cells were similarly abundant in de novo and rGBM, their spatial organization within tumors differed and was linked to outcomes. In rGBM, T cells were enriched and activated in perivascular regions and clustered with activated macrophages and fewer regulatory T cells. Moreover, a higher expression of phosphorylated STAT1 by T cells in these regions at recurrence was associated with a favorable prognosis. Together, our data identify differences in the immunobiology of de novo GBM and rGBM and identify perivascular T cells as potential therapeutic targets. See related Spotlight by Bayik et al., p. 787.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Quimiorradioterapia , Glioblastoma/genética , Humanos , Recidiva Local de Neoplasia/patologia , Prognóstico
4.
Front Immunol ; 12: 816658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082797

RESUMO

NK cells play a crucial role in host protection during tumorigenesis. Throughout tumor development, however, NK cells become progressively dysfunctional through a combination of dynamic tissue-specific and systemic factors. While a number of immunosuppressive mechanisms present within the tumor microenvironment have been characterized, few studies have contextualized the spatiotemporal dynamics of these mechanisms during disease progression and across anatomical sites. Understanding how NK cell immunosuppression evolves in these contexts will be necessary to optimize NK cell therapy for solid and metastatic cancers. Here, we outline the spatiotemporal determinants of antitumor NK cell regulation, including heterogeneous tumor architecture, temporal disease states, diverse cellular communities, as well as the complex changes in NK cell states produced by the sum of these higher-order elements. Understanding of the signals encountered by NK cells across time and space may reveal new therapeutic targets to harness the full potential of NK cell therapy for cancer.


Assuntos
Citotoxicidade Imunológica , Imunomodulação , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Biomarcadores , Comunicação Celular/genética , Comunicação Celular/imunologia , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Imunoterapia , Estadiamento de Neoplasias , Neoplasias/diagnóstico , Neoplasias/terapia , Especificidade do Receptor de Antígeno de Linfócitos T , Microambiente Tumoral/imunologia
5.
Cell Stem Cell ; 27(2): 192-194, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763179

RESUMO

Senescence is a critical factor in several diseases, yet senolytic therapies targeting senescent cells remain hindered by lack of specificity. In the June issue of Nature, Amor et al. (2020) develop chimeric antigen receptor (CAR)-T cells targeting uPAR, a novel senescent-cell marker, to treat liver adenocarcinoma and liver fibrosis.


Assuntos
Senescência Celular , Linfócitos T
6.
Nature ; 567(7747): 249-252, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842658

RESUMO

The liver is the most common site of metastatic disease1. Although this metastatic tropism may reflect the mechanical trapping of circulating tumour cells, liver metastasis is also dependent, at least in part, on the formation of a 'pro-metastatic' niche that supports the spread of tumour cells to the liver2,3. The mechanisms that direct the formation of this niche are poorly understood. Here we show that hepatocytes coordinate myeloid cell accumulation and fibrosis within the liver and, in doing so, increase the susceptibility of the liver to metastatic seeding and outgrowth. During early pancreatic tumorigenesis in mice, hepatocytes show activation of signal transducer and activator of transcription 3 (STAT3) signalling and increased production of serum amyloid A1 and A2 (referred to collectively as SAA). Overexpression of SAA by hepatocytes also occurs in patients with pancreatic and colorectal cancers that have metastasized to the liver, and many patients with locally advanced and metastatic disease show increases in circulating SAA. Activation of STAT3 in hepatocytes and the subsequent production of SAA depend on the release of interleukin 6 (IL-6) into the circulation by non-malignant cells. Genetic ablation or blockade of components of IL-6-STAT3-SAA signalling prevents the establishment of a pro-metastatic niche and inhibits liver metastasis. Our data identify an intercellular network underpinned by hepatocytes that forms the basis of a pro-metastatic niche in the liver, and identify new therapeutic targets.


Assuntos
Hepatócitos/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Fígado/patologia , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Animais , Carcinoma Ductal Pancreático/patologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/secundário , Feminino , Interleucina-6/metabolismo , Masculino , Camundongos , Fator de Transcrição STAT3/metabolismo , Proteína Amiloide A Sérica/metabolismo
7.
Pancreas ; 48(1): 94-98, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30540680

RESUMO

OBJECTIVES: IQ motif containing GTPase-activating protein 1 (IQGAP1) acts as a scaffold for aberrant mitogen-activated protein kinase (MAPK) signaling driven by KRAS mutations in pancreatic ductal adenocarcinoma (PDAC). We determined the role of IQGAP1 in clonogenic growth and metastasis in PDAC. METHODS: We inhibited IQGAP1 expression using shRNA and assessed clonogenic growth, cell migration, and MAPK signaling in vitro and tumor initiation and metastasis in vivo. The efficacy of a peptide mimicking the IQGAP1 WW domain that binds and inhibits ERK1/2 was determined in vitro and in vivo. RESULTS: IQGAP1 loss inhibited clonogenic growth and migration of KRAS-dependent PDAC cells by disrupting MAPK signaling. In mice, IQGAP1 knockdown decreased tumor-initiating cell frequency and metastasis. WW peptide treatment inhibited clonogenic growth and in vivo tumor growth. CONCLUSIONS: Pancreatic ductal adenocarcinoma clonogenic growth, metastasis, and tumor initiation are dependent on MAPK signaling via IQGAP1. Treatment with a WW peptide disrupts IQGAP1 function and represents a novel targeting strategy for PDAC.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteínas Ativadoras de ras GTPase/genética , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Metástase Neoplásica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Interferência de RNA , Terapêutica com RNAi/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteínas Ativadoras de ras GTPase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA