Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 140: 111685, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34015585

RESUMO

Type 2 diabetes mellitus, obesity, hypertension, and other associated metabolic complications have been demonstrated as a crucial contributor to the enhanced morbidity and mortality of patients with coronavirus disease 2019 (COVID-19). Data on the interplay between metabolic comorbidities and the outcomes in patients with COVID-19 have been emerging and rapidly increasing. This implies a mechanistic link between metabolic diseases and COVID-19 resulting in the exacerbation of the condition. Nonetheless, new evidences are emerging to support insulin-mediated aggressive glucose-lowering treatment as a possible trigger of high mortality rate in diabetic COVID-19 patients, putting the clinician in a confounding and difficult dilemma for the treatment of COVID-19 patients with metabolic comorbidities. Thus, this review discusses the pathophysiological link among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), angiotensin-converting enzyme 2 (ACE2), metabolic complications, and severe inflammation in COVID-19 development, especially in those with multi-organ injuries. We discuss the influence of several routinely used drugs in COVID-19 patients, including anti-inflammatory and anti-coagulant drugs, antidiabetic drugs, renin-angiotensin-aldosterone system inhibitors. Especially, we provide a balanced overview on the clinical application of glucose-lowering drugs (insulin and metformin), angiotensin-converting-enzyme inhibitors, and angiotensin receptor blockers. Although there is insufficient evidence from clinical or basic research to comprehensively reveal the mechanistic link between adverse outcomes in COVID-19 and metabolic comorbidities, it is hoped that the update in the current review may help to better outline the optimal strategies for clinical management of COVID-19 patients with metabolic comorbidities.


Assuntos
Tratamento Farmacológico da COVID-19 , Doenças Metabólicas/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , SARS-CoV-2/efeitos dos fármacos , Animais , Comorbidade , Humanos , Polimedicação
2.
Hepatol Int ; 14(5): 652-666, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32880077

RESUMO

The enrichment of innate immune cells and the enhanced inflammation represent the hallmark of non-alcoholic steatohepatitis (NASH), the advanced subtype with a significantly increased risk of progression to end-stage liver diseases within the spectrum of non-alcoholic fatty liver disease. Neutrophils are traditionally recognized as key components in the innate immune system to defend against pathogens. Recently, a growing body of evidence supports neutrophils as emerging key player in mediating the transition from steatosis to NASH, which is largely inspired by the histological findings in human liver biopsy indicating the enhanced infiltration of neutrophils as one of the key histological features of NASH. In this review, we discuss data regarding histological perspectives of hepatic infiltration of neutrophils in NASH. We also highlight the pathophysiological role of neutrophils in promoting metabolic inflammation in the liver through the release of a vast array of granule proteins, the interaction with other pro-inflammatory immune cells, and the formation of neutrophil extracellular traps. Neutrophil granule proteins possess pleiotropic effects on regulating neutrophil biology and functions. A variety of granule proteins (including lipocalin-2, myeloperoxidase, proteinase 3, neutrophil elastase, etc.) produced by neutrophils enhance liver metabolic inflammation, thereby promoting NASH progression by mediating neutrophil-macrophage interaction. Therapeutically, pharmacological inhibitors targeting neutrophil granule proteins hold promise to combat NASH. In addition, this article also summarizes potentials of neutrophils and its derived various granule proteins for the accurate, even non-invasive diagnosis of NASH.


Assuntos
Fígado , Infiltração de Neutrófilos , Neutrófilos , Hepatopatia Gordurosa não Alcoólica , Biomarcadores/análise , Humanos , Imunidade Inata , Fígado/imunologia , Fígado/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA