Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ovarian Res ; 16(1): 74, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046285

RESUMO

Polycystic ovarian syndrome (PCOS) is a complex multi-factorial syndrome associated with androgen excess and anovulatory infertility. In the current study, we investigated the role of dihydrotestosterone-induced exosomal miR-379-5p release in determining the destiny of the developing follicles. Our hypothesis was that androgen regulates granulosa cell miR-379-5p content by facilitating its exosomal release in a follicular-stage dependent manner, a process which determines granulosa cell fate. Compared to human non-PCOS subjects, individuals with PCOS exhibit higher follicular fluid free testosterone levels, lower exosomal miR-379-5p content and granulosa cell proliferation. Androgenized rats exhibited lower granulosa cell miR-379-5p but higher phosphoinositide-dependent kinase-1 (PDK1; a miR-379-5p target) content and proliferation. Androgen reduced granulosa cell miR-379-5p content by increasing its exosomal release in preantral follicles, but not in antral follicles in vitro. Studies with an exosomal release inhibitor confirmed that androgen-induced exosomal miR-379-5p release decreased granulosa cell miR-379-5p content and proliferation. Ovarian overexpression of miR-379-5p suppressed granulosa cell proliferation, and basal and androgen-induced preantral follicle growth in vivo. These findings suggest that increased exosomal miR-379-5p release in granulosa cells is a proliferative response to androgenic stimulation specific for the preantral stage of follicle development and that dysregulation of this response at the antral stage is associated with follicular growth arrest, as observed in human PCOS.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Feminino , Humanos , Ratos , Animais , Androgênios/farmacologia , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/genética , Células da Granulosa , MicroRNAs/genética
2.
Front Immunol ; 14: 1104550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033997

RESUMO

Polycystic ovarian syndrome (PCOS) is associated with hyperandrogenemia and ovarian antral follicle growth arrest. We have previously demonstrated that androgen-induced exosomal release of miR-379-5p (miR379) from preantral follicle granulosa cells increases the proliferation of target cells via phosphoinositide-dependent kinase 1 (PDK1) upregulation. Androgen also increases inflammatory M1 macrophage abundance, but reduces anti-inflammatory M2 polarization in rat antral and preovulatory follicles. However, the role of small extracellular vesicles (sEVs; also known as exosomes) secretion in determining the cellular content and function of miRNAs in exosome-receiving cells is largely unknown. Our objectives were to determine: 1) the regulatory role of granulosa cells (GC)-derived exosomal miR379 on macrophage polarization and ovarian inflammation; 2) whether miR379-induced M1 polarization regulates GC proliferation; and 3) if this regulated process is follicular stage-specific. Compared with non-PCOS subjects, PCOS subjects had a higher M1/M2 ratio, supporting the concept that PCOS is an inflammatory condition. Ovarian overexpression of miR379 increased the number of M1 macrophages and the M1/M2 ratio in preantral follicles specifically. Transfection of macrophages with a miR379 mimic reduced the cellular content of PDK1 and induced M0→M1 polarization; whereas its inhibitor polarized M0→M2. Conditioned media from macrophages transfected with miR379 mimic and follicular fluid from PCOS subjects had higher galectin-3 content, a pro-inflammatory cytokine which specifically suppresses human antral follicle GC proliferation. These results indicate that miR379 inhibits M2 macrophage polarization, a condition which suppresses GC proliferation in a follicle stage-dependent manner, as exhibited in PCOS.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Feminino , Humanos , Ratos , Animais , Síndrome do Ovário Policístico/genética , Androgênios , Células da Granulosa , MicroRNAs/genética , Macrófagos
3.
Front Endocrinol (Lausanne) ; 13: 852127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813635

RESUMO

Estradiol represents a key steroid ovarian hormone that not only plays a vital role in ovarian follicular development but also is associated with many other reproductive functions. Our primary study revealed that miR-574 expression decreased in porcine granulosa cells during development from small to large follicles, and the increase of ERK1/2 phosphorylation accompanies this change. Since it has been well established that the ERK1/2 activity is tightly associated with granulosa cell functions, including ovarian hormone production, we thus further investigate if the miRNA is involved in the regulation of estradiol production in granulosa cells. We found that overexpression of miR-574 decreased phosphorylated ERK1/2 without affecting the level of ERK1/2 protein, and on the other hand, the inhibition of miR-574 increased phosphorylated ERK1/2 level (P<0.05); meanwhile, overexpression of miR-574 increased estradiol production but knockdown of miR-574 decreased estradiol level in granulosa cells. To further identify the potential mechanism involved in the miR-574 regulatory effect, in silico screening was performed and revealed a potential binding site on the 3'UTR region of the tissue inhibitor of metalloproteinase 3 (TIMP3). Our gain-, loss- of function experiments, and luciferase reporter assay confirmed that TIMP3 is indeed the target of miR-574 in granulosa cell. Furthermore, the siRNA TIMP3 knockdown resulted in decreased phosphorylated ERK1/2, and an increase in estradiol production. In contrast, the addition of recombinant TIMP3 increased phosphorylated ERK1/2 level and decreased estradiol production. In summary, our results suggest that the miR-574-TIMP3-pERK1/2 cascade may be one of the pathways by which microRNAs regulate granulosa cell estradiol production.


Assuntos
Estradiol , MicroRNAs , Animais , Feminino , Células da Granulosa/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Transdução de Sinais , Suínos , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo
4.
Microbiol Spectr ; 10(4): e0125721, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736372

RESUMO

Enteric infections caused by enterotoxic Escherichia coli (ETEC) negatively impact the growth performance of piglets during weaning, resulting in significant economic losses for the producers. With the ban on antibiotic usage in livestock production, probiotics have gained a lot of attention as a potential alternative. However, strain specificity and limited knowledge on the host-specific targets limit their efficacy in preventing ETEC-related postweaning enteric infections. We recently isolated and characterized a novel probiotic Bacillus subtilis bacterium (CP9) that demonstrated antimicrobial activity. Here, we report anti-ETEC properties of CP9 and its impact on metabolic activity of swine intestinal epithelial (IPEC-J2) cells. Our results showed that pre- or coincubation with CP9 protected IPEC-J2 cells from ETEC-induced cytotoxicity. CP9 significantly attenuated ETEC-induced inflammatory response by reducing ETEC-induced nitric oxide production and relative mRNA expression of the Toll-like receptors (TLRs; TLR2, TLR4, and TLR9), proinflammatory tumor necrosis factor alpha, interleukins (ILs; IL-6 and IL-8), augmenting anti-inflammatory granulocyte-macrophage colony-stimulating factor and host defense peptide mucin 1 (MUC1) mRNA levels. We also show that CP9 significantly (P < 0.05) reduced caspase-3 activity, reinstated cell proliferation and increased relative expression of tight junction genes, claudin-1, occludin, and zona occludens-1 in ETEC-infected cells. Finally, metabolomic analysis revealed that CP9 exposure induced metabolic modulation in IPEC J2 cells with the greatest impact seen in alanine, aspartate, and glutamate metabolism; pyrimidine metabolism; nicotinate and nicotinamide metabolism; glutathione metabolism; the citrate cycle (TCA cycle); and arginine and proline metabolism. Our study shows that CP9 incubation attenuated ETEC-induced cytotoxicity in IPEC-J2 cells and offers insight into potential application of this probiotic for ETEC infection control. IMPORTANCE ETEC remains one of the leading causes of postweaning diarrhea and mortality in swine production. Due to the rising concerns with the antibiotic use in livestock, alternative interventions need to be developed. In this study, we analyzed the cytoprotective effect of a novel probiotic strain in combating ETEC infection in swine intestinal cells, along with assessing its mechanism of action. To our knowledge, this is also the first study to analyze the metabolic impact of a probiotic on intestinal cells. Results from this study should provide effective cues in developing a probiotic intervention for ameliorating ETEC infection and improving overall gut health in swine production.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Probióticos , Animais , Antibacterianos/farmacologia , Bacillus subtilis , Linhagem Celular , Citoproteção , Escherichia coli Enterotoxigênica/metabolismo , Células Epiteliais/microbiologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Probióticos/farmacologia , RNA Mensageiro/metabolismo , Suínos
5.
Theriogenology ; 179: 117-127, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864562

RESUMO

In mammals, oxidative stress-induced apoptosis of granulosa cells is one of the major causes of follicular atresia, affecting ovarian physiological function. Protegrin-1 (PG-1) is an antimicrobial peptide with effective antimicrobial activity, immunomodulatory function, and porcine growth-promoting effects. PG-1 has been detected in porcine ovaries follicles. This study aimed to investigate the effect of PG-1 on oxidative stress-induced apoptosis of porcine ovarian granulosa cells and the underlying molecular mechanism. Granulosa cells were obtained from porcine follicles and treated with H2O2 to establish the oxidative stress model, and then treated with or without PG-1 (10 µg/mL). PG-1 significantly suppressed H2O2-induced apoptosis in granulosa cells after 24 h of treatment. Furthermore, these results revealed that PG-1 increased the mRNA and protein expression of anti-apoptotic B cell lymphoma/leukemia 2 (BCL2) and the BCL2/Bcl-2-associated X protein (BAX) ratio while decreasing the expression of pro-apoptotic BAX and active caspase-3. Using Western blot analysis, it was found that PG-1 decreased the phosphorylation of RNA-like endoplasmic reticulum kinase (PERK) and the α-subunit of eukaryotic initiation factor 2 (eIF2α) as well as the protein expression level of CCAAT enhancer-binding protein homologous protein (CHOP), all of which were increased by H2O2. Moreover, inhibitors against PERK and phospho-eIF2ɑ both suppressed the H2O2-induced granulosa cells apoptosis and enhanced the anti-apoptosis effect of PG-1. Taken together, our findings demonstrated that PG-1 inhibited porcine ovarian granulosa cell apoptosis from oxidative stress via the PERK/eIF2α/CHOP signaling pathway in vitro, which suggests the novel regulatory function of the antimicrobial peptide in the ovary.


Assuntos
Fator de Iniciação 2 em Eucariotos , Ovário , Animais , Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Apoptose , Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Atresia Folicular , Células da Granulosa/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Ovário/metabolismo , Estresse Oxidativo , Fosforilação , RNA/metabolismo , Transdução de Sinais , Suínos , eIF-2 Quinase/metabolismo
6.
J Mol Endocrinol ; 68(1): 11-22, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34665763

RESUMO

In antral follicles, the transition of proliferative granulosa cells to estradiol-producing is critical for proper oocyte maturation. MicroRNAs are noncoding RNAs that play important roles in ovarian follicular development; however, this has yet to be fully characterized. MicroRNA-21 is significantly higher in granulosa cells isolated from large antral follicles compared to those from small antral follicles. To investigate the function of miR-21, porcine granulosa cells were transfected with miR-21 mimic or miR-21 targeted siRNA. Cells with the miR-21 mimic had higher aromatase expression and estradiol production but decreased WT1 expression. Conversely, cells with the miR-21 siRNA secreted less estradiol and had higher WT1 expression. We hypothesized that miR-21 promotes estradiol production by inhibiting WT1 protein synthesis. We found a potential miR-21 binding site in the 3'UTR of the WT1 transcript and performed a dual-luciferase reporter assay using the WT and mutated 3'UTR. Compared to the negative control, the miR-21 mimic induced a significant decrease in luciferase activity in the WT 3'UTR. This decrease was reversed when the 3'UTR was mutated, suggesting miR-21 targets this site to inhibit WT1 expression. We next transfected porcine granulosa cells with WT1 targeted siRNA and observed a significant increase in aromatase expression and estradiol secretion. We propose that miR-21 represses WT1 expression in granulosa cells to potentially promote aromatase expression and estradiol production. This study offers the first report of a microRNA regulating WT1 expression in granulosa cells and reveals the role of miR-21 in WT1's regulation of estradiol production.


Assuntos
Estradiol/biossíntese , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , MicroRNAs/genética , Interferência de RNA , Proteínas WT1/genética , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Folículo Ovariano/metabolismo , Suínos , Proteínas WT1/metabolismo
7.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201585

RESUMO

Forkhead box O3 (Foxo3) is a member of the FOXO subfamily within the forkhead box (FOX) family, which has been shown to be essential for ovarian follicular development and maturation. Previous studies have shown the abundant expression of miR-195-5p in the nuclei of porcine granulosa cells (GCs), suggesting its potential role during ovarian follicle growth. In this study, a conditional immortalized porcine granulosa cell (CIPGC) line was used to determine whether the expression of Foxo3 could be regulated by the nuclear-enriched miR-195-5p. Through silico target prediction, we identified a potential binding site of miR-195-5p within the Foxo3 promoter. The over-expression of miR-195-5p increased Foxo3 expression at both mRNA and protein levels, while the knockdown of miR-195-5p decreased the expression of Foxo3. Furthermore, driven by the Foxo3 promoter, luciferase reporter activity was increased in response to miR-195-5p, while the mutation of the miR-195-5p binding site in the promoter region abolished this effect. In addition, the siRNA knockdown of Argonaute (AGO) 2, but not AGO1, significantly decreased Foxo3 transcript level. However, miR-195-5p failed to upregulate Foxo3 expression when AGO2 was knocked down. Moreover, chromatin immunoprecipitation (CHIP) assay showed that anti-AGO2 antibody pulled down both AGO2 and the Foxo3 promoter sequence, suggesting that AGO2 may be required for miR-195-5p to regulate Foxo3 expression in the nucleus. Additionally, Foxo3 expression was significantly increased by valproic acid (VPA), the inhibitor of deacetylase, as well as by methyltransferase inhibitor BIX-01294, indicating the involvement of histone modification. These effects were further enhanced in the presence of miR-195-5p and were decreased when miR-195-5p was knocked down. Overall, our results suggest that nuclear-enriched miR-195-5p regulates Foxo3 expression, which may be associated with AGO2 recruitment, as well as histone demethylation and acetylation in ovarian granulosa cells.


Assuntos
Proteína Forkhead Box O3/genética , Células da Granulosa/fisiologia , MicroRNAs/genética , Animais , Proteínas Argonautas/genética , Sítios de Ligação , Linhagem Celular , Núcleo Celular/genética , Imunoprecipitação da Cromatina , Epigênese Genética , Feminino , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica , Células da Granulosa/citologia , Células da Granulosa/efeitos dos fármacos , Histonas/genética , Histonas/metabolismo , Regiões Promotoras Genéticas , Suínos , Ácido Valproico/farmacologia
8.
Front Biosci (Landmark Ed) ; 26(12): 1525-1536, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34994167

RESUMO

BACKGROUND: Female infertility is a health issue for both humans and animals and despite developments in medical interventions, there are still some conditions that cannot be treated successfully. It is important to explore other potential therapies or remedies that could improve reproductive health. Choline is an over-the-counter supplement and essential nutrient that has many health benefits. It has been suggested to be beneficial in various aspects of fertility, including fetal development and endocrine disorders like polycystic ovarian syndrome (PCOS). However, choline's impact on ovarian function has not been explored. METHODS: To study the effects of choline on ovarian development, 36 female Yorkshire × Landrace pigs were fed the following four supplemented diets between 90 and 186 days of age: (1) Control (corn and soybean meal-based diet that met estimated nutrient requirements, n = 9); (2) Choline (additional 500 mg choline per 1 kg of control diet, n = 8); (3) Omega-3 (additional 5556 mg Omega-3 per 1 kg control diet by introducing fish oil); (4) Choline + Omega-3 (500 mg choline + 5556 mg Omega-3 per 1 kg control diet). Pigs fed the choline-supplemented diet were compared to the control group and those fed diets supplemented with Omega-3 as fertility-promoting agent. RESULTS: It was found that the number of corpus luteum per ovary in the Choline (16.25 ± 2.88), Omega-3 (10.78 ± 1.71) and Choline + Omega-3 (14.89 ± 2.97) groups were all higher in comparison to that of the control group (5.56 ± 1.72, p < 0.05). The percentage of antral follicles in the Choline + Omega-3 group were higher compared to the control group (p < 0.05). To elucidate the potential molecular mechanism of choline on these improved ovarian phenotypes, the expression of a group of genes that are involved in ovarian development, including cytochrome P450 family 11 subfamily A member 1 (CYP11A1), follicle stimulating hormone receptor (FHSR) and luteinizing hormone receptor (LHR), was analyzed using RT-qPCR. The expression of both LHR and CYP11A1 was significantly upregulated in the choline-supplemented group (p < 0.05), while there are no differences in FSHR expression among all the groups. Additionally, the expression of miR-21, -378, -574, previously found to be important in ovarian function, were examined. Our data showed that miR-574 was upregulated in the Choline group while miR-378 was upregulated in the Choline + Omega-3 group in comparison to the control group (p < 0.05). Further, serum metabolite analysis showed that 1-(5Z, 8Z, 11Z, 14Z, 17Z-eicosapentaenoyl)-sn-glycero-3-phosphocholine, a form of phosphatidylcholine metabolite, was significantly increased in all the treatment groups (p < 0.05), while testosterone was significantly increased in both Omega-3 and Choline + Omega-3 groups (p < 0.05) and tended to be reduced in the choline-supplemented group (p = 0.08) compared to the control group. CONCLUSIONS: Our study demonstrated choline's influence on ovarian function in vivo, and offered insights into the mechanisms behind its positive effect on ovarian development phenotype.


Assuntos
Síndrome do Ovário Policístico , Animais , Colina , Suplementos Nutricionais , Feminino , Folículo Ovariano , Suínos
9.
Poult Sci ; 99(11): 5736-5743, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33142491

RESUMO

We investigated efficacy of in ovo application of epidermal growth factor (EGF) on intestinal expression of EGF receptor (EGFR) during embryogenesis (experiment 1) and posthatch growth performance and gastrointestinal development in broiler chickens (experiment 2). In experiment 1, 450 fertile Ross 708 eggs were allocated to 3 groups (150 eggs/group): 1) control, 2) 160 µg EGF/kg of egg, and 3) 640 µg of EGF/kg of egg. Eggs were candled for live embryos on day 16 and injected with the respective treatment solutions on day 17 and sampled for jejunal tissue from day 17 to hatch for EGFR analyses. There was no effect of EGF (P > 0.05) on EGFR expression on day 17 to 20; however, on day 21, EGF increased (P < 0.05) EGFR expression in EGF birds relative to control birds. In experiment 2, 600 fertile Ross 708 eggs were allocated to 5 treatments: 1) intact, no puncture or injection, 2) punched but not injected, 3) control, no EGF, 4) 80 µg of EGF/kg of egg, and 5) 160 µg of EGF/kg of egg. The eggs were incubated and candled for live embryos on D 19, treated, and subsequently transferred to the hatcher. Upon hatching, chicks were weighed, and 90 chicks per treatment placed in cages (15 birds/cage) and allowed free access to a standard antibiotic-free corn-soybean diet for 21 D. Feed intake and body weight were monitored on a weekly basis. Samples of birds were necropsied on D 0, 7, 14, and 21 for measurements of intestinal weight and jejunal histomorphology and excreta samples taken on D 3 to 5 and 17 to 19 for apparent retention of dry matter. There was no EGF effect (P > 0.05) on any posthatch response criteria. In conclusion, in ovo application of EGF increased EGFR expression but had no effect on posthatch growth performance, DM retention, and intestinal development. The lack of EGF effect on posthatch response was surprising but suggested in ovo application of EGF may not be a viable approach.


Assuntos
Peso Corporal , Galinhas , Fator de Crescimento Epidérmico , Receptores ErbB , Regulação da Expressão Gênica , Intestinos , Animais , Peso Corporal/efeitos dos fármacos , Embrião de Galinha , Galinhas/crescimento & desenvolvimento , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/crescimento & desenvolvimento , Zigoto/fisiologia
10.
Antioxidants (Basel) ; 9(6)2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545880

RESUMO

Negative energy balance (NEB) during the perinatal period can affect dairy cow follicular development and reduce the fecundity. Non-esterified fatty acid (NEFA) concentration is elevated during NEB, and is known to be toxic for multiple cell types. In the ovary, NEB increased NEFA, and may influences follicular growth and development. However, the effect and mechanism of NEFA on granulosa cells (GCs) in vitro remains unknown. In this study, we found that NEFA dose-dependently induced apoptosis in primary cultured granulosa cells. Mechanistically, our data showed that NEFA significantly increased reactive oxygen species (ROS) levels, resulting in the activation of endoplasmic reticulum stress (ERS) and eventually cell apoptosis in GCs. Moreover, NEFA also increased the phosphorylation levels of ERK1/2 and p38MAPK pathways, upregulated the expression of p53 and potentially promoted its translocation to the nuclear, thus transcriptionally activated Bax, a downstream gene of this pathway. NEFA also promoted nuclear factor E2 (Nrf2) expression and its level in the nuclear. To elucidate the mechanism of NEFA action, N-acetyl-L-cysteine (NAC), a ROS scavenger was used to verify the role of ROS in NEFA induced apoptosis of GCs. NAC pretreatment reversed the NEFA-induced ERS-related protein and apoptosis-related protein levels. Meanwhile, NAC pretreatment also blocked the phosphorylation of ERK1/2 and p38 induced by NEFA, and the nucleation of Nrf2 and p53, suggesting that ROS plays a crucial role in regulating the NEFA-induced apoptosis of GCs. Together, these findings provide an improved understanding of the mechanisms underlying GCs apoptosis, which could potentially be useful for improving ovarian function.

11.
Cells ; 9(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936362

RESUMO

Granulosa cells (GCs) are the key components of ovarian follicles for regulating oocyte maturation. Previous established GC lines have allowed prolonged proliferation, but lost some physiological features owing to long-term immortalization. This study was to establish an induced immortal porcine GC line with reversible proliferation status by the tetracycline inducible (Tet-on) 3G system. Our conditional immortal porcine GCs (CIPGCs) line steadily propagated for at least six months and displayed primary GC morphology when cultured in the presence of 50 ng/mL doxycycline [Dox (+)]. Upon Dox withdrawal [Dox (-)], Large T-antigen expression, reflected by mCherry fluorescence, gradually became undetectable within 48 h, accompanied by less proliferation and size increase. The levels of estradiol and progesterone, and the expression of genes associated with steroid production, such as CYP11A1 (cytochrome P450 family 11), 3ß-HSD (3ß-hydroxysteroid dehydrogenase), StAR (steroidogenic acute regulatory protein), and CYP19A1 (cytochrome P450 family 19 subfamily a member 1), were all significantly higher in the Dox (-) group than Dox (+) group. The CIPGCs could switch into a proliferative state upon Dox induction. Interestingly, the expression of StAR and CYP19A1 in the CIPGCs (-Dox) was significantly increased by adding porcine follicular fluid (PFF) to mimic an ovary follicle environment. Moreover, PFF priming the CIPGCs in Dox (-) group resulted in similar estradiol production as that of primary GC, and enabled this cell line to respond to gonadotrophins in estradiol production. Collectively, we have established an inducible immortal porcine GC line, which offers a unique and valuable model for future research on the regulation of ovarian functions.


Assuntos
Proliferação de Células , Doxorrubicina/farmacologia , Estradiol/metabolismo , Células da Granulosa/citologia , Progesterona/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Aromatase/genética , Aromatase/metabolismo , Ciclo Celular , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Suínos
12.
Reprod Biol Endocrinol ; 17(1): 8, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611263

RESUMO

A central dogma of mammalian reproductive biology is that the size of the primordial follicle pool represents reproductive capacity in females. The assembly of the primordial follicle starts after the primordial germ cells (PGCs)-derived oocyte releases from the synchronously dividing germline cysts. PGCs initiate meiosis during fetal development. However, after synapsis and recombination of homologous chromosomes, they arrest at the diplotene stage of the first meiotic prophase (MI). The diplotene-arrested oocyte, together with the surrounding of a single layer of flattened granulosa cells, forms a basic unit of the ovary, the primordial follicle. At the start of each estrous (animal) or menstrual cycle (human), in response to a surge of luteinizing hormone (LH) from the pituitary gland, a limited number of primordial follicles are triggered to develop into primary follicles, preantral follicles, antral follicles and reach to preovulatory follicle stage. During the transition from the preantral to antral stages, the enclosed oocyte gradually acquires the capacity to resume meiosis. Meiotic resumption from the prophase of MI is morphologically characterized by the dissolution of the oocyte nuclear envelope, which is generally termed the "germinal vesicle breakdown" (GVBD). Following GVBD and completion of MI, the oocyte enters meiosis II without an obvious S-phase and arrests at metaphase phase II (MII) until fertilization. The underlying mechanism of meiotic arrest has been widely explored in numerous studies. Many studies indicated that two cellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) play an essential role in maintaining oocyte meiotic arrest. This review will discuss how these two cyclic nucleotides regulate oocyte maturation by blocking or initiating meiotic processes, and to provide an insight in future research.


Assuntos
Mamíferos/fisiologia , Meiose/fisiologia , Modelos Biológicos , Oócitos/citologia , Animais , AMP Cíclico/fisiologia , GMP Cíclico/fisiologia , Feminino , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Células da Granulosa/fisiologia , Humanos , Prófase Meiótica I , Metáfase , Oócitos/metabolismo
13.
Cell Cycle ; 17(18): 2230-2242, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30244637

RESUMO

MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs which can bind to completely or partially complementary sequences in the 3'UTR of target mRNAs, therefore degrading the mRNA or repressing translation. We previously reported that miR-378 played a role in estradiol production via suppression of aromatase translation in porcine granulosa cells and could affect oocyte maturation in vitro by inhibiting cumulus cell expansion. However, the role of miR-378 on ovary development in vivo is unknown. The current study aimed to uncover the molecular mechanism of miR-378 in regulating mouse follicular development via micro-injection of CMV-miR-378 lentivirus into the bursa of mouse ovary. The results showed that CMV-miR-378 lentivirus transduction in the mouse ovaries resulted in reduced ovary size, extended oestrous cycle (6-7 d in miR-378 overexpression group and 4-5 dyas in GFP control group) due to continuous oestrum, decreased percentage of oocytes in vitro maturation rate (IVM 60.8% vs. 89.4% in GFP control), increased apoptosis rate (Bax/Bcl2 in mRNA and protein level), decreased expression of genes associated with gap junction, such as connexin 43 (Cx-43) and connexin (Cx-37) and decreased expression of genes associated with follicular development, such as BMP15 and GDF9. Moreover, the number of pups/litter was consistently lower in the miR-378 group in each batch of the paired breeding. Our data suggest that miR-378 alters gene expression in cumulus cells and indirectly influences oocyte maturation competency, possibly via inhibition of oocyte-cumulus interaction or induction of apoptosis.


Assuntos
MicroRNAs/metabolismo , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Animais , Apoptose/genética , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Conexina 43/metabolismo , Células do Cúmulo/metabolismo , Ciclo Estral/fisiologia , Feminino , Células da Granulosa/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Masculino , Camundongos , MicroRNAs/genética , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
14.
JPEN J Parenter Enteral Nutr ; 41(6): 938-945, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-26838525

RESUMO

BACKGROUND: Data are limited on how short bowel syndrome (SBS) affects the healthy developing intestinal microbiome, with even less assessing different SBS anatomical surgical models. This study was conducted to describe the "ileal" and "colonic" microflora in 2 surgical models of SBS. MATERIALS AND METHODS: Neonatal piglets (2-5 days old) underwent intestinal resection, leaving the ileum (JI anatomy, n = 6) or removing the ileum and ileocecal valve (JC anatomy, n = 5), or sham surgery (sham; n = 4). JI, JC, and sham piglets commenced parenteral nutrition on day 0 and received ampicillin and trimethoprim-sulfadoxine on days 0-4 for prevention of line sepsis. At day 7, ileal and colonic digesta were collected, and they were also collected from age-matched sow-fed piglets (n = 6). DNA extraction, sequencing, and annotation followed standard procedures. RESULTS: Colonic and ileal bacterial genus diversity and relative bacterial abundance were greater ( P < .05) in sow-fed compared with JI, JC, and sham piglets; however, minor differences were observed in either location between sham, JI, and JC piglets and within the surgical model. In the colon, sow-fed piglets had higher ( P < .05) abundance of Lactobacillus (26%) and tended to have lower ( P = .06) abundance of Enterococcus (<.1%) than JI, JC, or sham piglets, in which Lactobacillus and Enterococcus abundance averaged <.1% and 9%, respectively. CONCLUSIONS: Intestinal resection reduces bacterial diversity in the large bowel, and the difference is associated with the presence/absence of the ileum and ileocecal valve. The lack of enteral nutrition and antibiotic administration (ie, sow-fed vs surgery) had a greater influence on the observed shift in diversity and relative abundance than intestinal resection.


Assuntos
Antibacterianos/farmacologia , Nutrição Enteral , Microbioma Gastrointestinal , Síndrome do Intestino Curto/tratamento farmacológico , Síndrome do Intestino Curto/cirurgia , Ampicilina/farmacologia , Animais , Animais Recém-Nascidos , DNA Bacteriano/isolamento & purificação , Modelos Animais de Doenças , Combinação de Medicamentos , Enterococcus/efeitos dos fármacos , Enterococcus/isolamento & purificação , Intestinos/microbiologia , Intestinos/cirurgia , Lactobacillus/efeitos dos fármacos , Lactobacillus/isolamento & purificação , Nutrição Parenteral , Sepse/prevenção & controle , Análise de Sequência de DNA , Sulfadoxina/farmacologia , Suínos , Trimetoprima/farmacologia
15.
Appl Microbiol Biotechnol ; 99(11): 4667-77, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25833182

RESUMO

Epidermal growth factor (EGF) and trefoil factor 3 (TFF3) are peptides that actively support the restitution and repair of mucosal epithelial barriers. Previous studies have shown that TFF3 enhanced EGF effect in wound healing, suggesting that the combined application of the two factors may be advantageous in clinical tissue repair. Expression of multiple proteins in a single host is a desirable approach in a biotechnological process, allowing to reduce cost and increase production efficiency. The aim of the present study was to study the feasibility of coexpressing EGF and TFF3 in food grade bacteria, Lactococcus lactis (L. lactis). Using an expression construct allowing simultaneous translation of two separate recombinant peptides, we generated a L. lactis that coexpressed and secreted EGF and TFF3 dually (LL-ET). Western blot analysis revealed that LL-ET secreted 45-54 % more total recombinant peptides (EGF+TFF3) per flask fermentation and 21-37 % more total recombinant proteins in bioreactor fermentation compared to their single factor expressing L. lactis counterparts (LL-EGF and LL-TFF3, respectively). The resulted recombinant EGF and TFF3 showed enhancement in wound healing activity in vitro. Our data suggest that the dual expression and secretion of EGF and TFF3 by L. lactis effectively accelerated cell migration, demonstrating potential future oral application of L. lactis fermentation product containing dual factors or a cocktail of factors to potentially treat intestinal damage and inflammation.


Assuntos
Produtos Biológicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/metabolismo , Lactococcus lactis/metabolismo , Peptídeos/metabolismo , Animais , Reatores Biológicos , Linhagem Celular , Fator de Crescimento Epidérmico/genética , Fermentação , Expressão Gênica , Lactococcus lactis/genética , Peptídeos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Suínos , Fator Trefoil-3
16.
Am J Physiol Endocrinol Metab ; 308(6): E525-34, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25628423

RESUMO

We sought to investigate whether miR-378 plays a role in cumulus cells and whether the manipulation of miRNA levels in cumulus cells influences oocyte maturation in vitro. Cumulus-oocyte complexes (COCs) from ovarian follicles had significantly lower levels of precursor and mature miR-378 in cumulus cells surrounding metaphase II (MII) oocytes than cumulus cells surrounding germinal vesicle (GV) oocytes, suggesting a possible role of miR-378 during COC maturation. Overexpression of miR-378 in cumulus cells impaired expansion and decreased expression of genes associated with expansion (HAS2, PTGS2) and oocyte maturation (CX43, ADAMTS1, PGR). Cumulus cell expression of miR-378 also suppressed oocyte progression from the GV to MII stage (from 54 ± 2.7 to 31 ± 5.1%), accompanied by a decrease of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), zona pellucida 3 (ZP3), and CX37 in the oocytes. Subsequent in vitro fertilization resulted in fewer oocytes from COCs overexpressing miR-378 reaching the blastocyst stage (7.3 ± 0.7 vs. 16.6 ± 0.5%). miR-378 knockdown led to increased cumulus expansion and oocyte progression to MII, confirming a specific effect of miR-378 in suppressing COC maturation. Aromatase (CYP19A1) expression in cumulus cells was also inhibited by miR-378, leading to a significant decrease in estradiol production. The addition of estradiol to IVM culture medium reversed the effect of miR-378 on cumulus expansion and oocyte meiotic progression, suggesting that decreased estradiol production via suppression of aromatase may be one of the mechanisms by which miR-378 regulates the maturation of COCs. Our data suggest that miR-378 alters gene expression and function in cumulus cells and influences oocyte maturation, possibly via oocyte-cumulus interaction and paracrine regulation.


Assuntos
Aromatase/genética , Células do Cúmulo/metabolismo , MicroRNAs/fisiologia , Oócitos/fisiologia , Oogênese/genética , Animais , Aromatase/metabolismo , Células Cultivadas , Células do Cúmulo/fisiologia , Regulação para Baixo/genética , Estradiol/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Maturação in Vitro de Oócitos , Comunicação Parácrina/genética , Suínos
17.
Stem Cells Dev ; 23(14): 1647-58, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24593690

RESUMO

Reduction of estradiol production and high serum concentrations of follicular stimulating hormone (FSH) are endocrine disorders associated with premature ovarian failure. Here, we report that transplantation of ovarian-like cells differentiated from stem cells restored endogenous serum estradiol levels. Stem cells were isolated from postnatal mouse skin and differentiated into ovarian-cell-like cells that are consistent with female germ, and ovarian follicle somatic cells. The ovarian-cell-like cells were transplanted into ovariectomized mice (Cell Trans), whereas control mice were subjected to bilateral ovariectomies without cell transplantation (OVX). Using vaginal cytology analysis, it was revealed that in 13 out of 19 Cell Trans mice, estrus cycles were restored around 8 weeks after cell transplantation and were maintained until 16 weeks post-transplantation, whereas in the OVX group, all mice were arrested at metestrus/diestrus of the estrus cycle. The uterine weight in the Cell Trans group was similar to sham operation mice (Sham OP), while severe uterine atrophy and a decreased uterine weight were observed in the OVX group. Histologically, ectopic follicle-like structures and blood vessels were found within and around the transplants. At 12-14 weeks after cell transplantation, mean serum estradiol level in Cell Trans mice (178.0±35 pg/mL) was comparable to that of the Sham OP group (188.9±29 pg/mL), whereas it was lower in the OVX group (59.0±4 pg/mL). Serum FSH concentration increased in the OVX group (1.62±0.32 ng/mL) compared with the Sham OP group (0.39±0.34 ng/mL). Cell Trans mice had a similar FSH level (0.94±0.23 ng/mL; P<0.05) to Sham OP mice. Our results suggest that ovarian somatic cells differentiated from stem cells are functional in vivo. In addition to providing insights into the function of ovarian somatic cells derived from stem cells, our study may offer potential therapeutic means for patients with hypo-estradiol levels like those encountered in premature ovarian failure.


Assuntos
Estradiol/metabolismo , Estro/fisiologia , Ovário/transplante , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Diferenciação Celular/genética , Estradiol/biossíntese , Feminino , Hormônio Foliculoestimulante/metabolismo , Humanos , Camundongos , Folículo Ovariano/metabolismo , Ovariectomia , Ovário/metabolismo
18.
Stem Cells Dev ; 22(6): 939-50, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23259838

RESUMO

Evidence supporting that deleted in azoospermia-like (DAZL) plays a key role during gametogenesis and meiosis continues to emerge. Our study aimed to determine whether overexpression of DAZL using a lentiviral approach in a somatic stem cell to germ cell in vitro differentiation culture could enhance the formation of primordial germ cell-like cells (PLCs) and oocyte-like cells (OLCs). Introduction of DAZL at the beginning of induced differentiation significantly increased the formation of Fragilis-positive PLCs, which was independent of mitotic proliferation. In addition, mRNA levels of the germ cell markers Oct4, Stella, and Vasa were also higher in the DAZL-transduced group and suppressed when DAZL was knocked down using small interference RNA. At later stages of differentiation, the expression of several genes associated with meiosis, including Scp3, Dmc1, Rec8, and Stra8, was determined to be significantly higher when DAZL was overexpressed, which was abrogated by its knockdown. Exogenous introduction of DAZL also increased the protein levels of SCP3 and VASA, which again was reversed by its knockdown. Although not a common phenomenon in the in vitro differentiation system, the percentage of SCP3-positive cells displaying meiotic chromosome patterns in the DAZL-transduced group was higher than in the control, as was the overall percentage of OLCs that were generated. The introduction of factors such as DAZL into a stem cell-to-germ cell differentiation culture may provide an opportunity to better understand the key genes and their interactions during gametogenesis, also providing a means to enhance the generation of germ cells in vitro.


Assuntos
Células Germinativas/fisiologia , Meiose , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/fisiologia , Animais , Antígenos de Diferenciação/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Forma Celular , Células Cultivadas , Replicação do DNA , Expressão Gênica , Técnicas de Silenciamento de Genes , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Pele/citologia , Células-Tronco/fisiologia , Sus scrofa
19.
Endocrinology ; 152(10): 3941-51, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21846797

RESUMO

Estradiol is a steroid hormone that not only plays an important role in ovarian follicular development but also is associated with many reproductive disorders. Owing to the importance of aromatase in the production of estradiol, the regulation of aromatase gene expression at the transcriptional level has been an extensive area of study for over two decades. However, its regulation at the posttranscriptional level has remained unclear. Here, we show that micro-RNA378 (miR-378) is spatiotemporally expressed in porcine granulosa cells, the cells that generate estradiol in the ovary during follicular development, in an inverse manner compared with the expression of aromatase. In vitro overexpression and inhibition experiments revealed that aromatase expression, and therefore estradiol production, by granulosa cells, is posttranscriptionally down-regulated by miR-378. Furthermore, site-directed mutation studies identified two binding sites in the 3'-untranslated region (3'-UTR) of the aromatase coding sequence that are critical for the action of miR-378. Interestingly, overexpression of the aromatase 3'-UTR enhanced aromatase expression at the protein level in granulosa cells, possibly mediated by the binding of miR-378 within this region, thereby reducing the binding of this micro-RNA to the endogenous aromatase 3'-UTR.


Assuntos
Aromatase/genética , Estradiol/biossíntese , MicroRNAs/fisiologia , Ovário/metabolismo , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Células Cultivadas , Feminino , Dados de Sequência Molecular , Suínos
20.
Cloning Stem Cells ; 11(1): 101-10, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19226213

RESUMO

Although transgenic animal production through somatic cell nuclear transfer (SCNT) has been successful, the process is still inefficient. One major limitation is the use of somatic donor cells that have a finite life span. Identification and isolation of a cell type capable of rapid proliferation while possessing immortal or prolonged life span in culture and is capable of being genetically modified would be very valuable for utilization in the production of genetically modified pigs. Here we report the birth of live piglets after cloning by using porcine skin-derived stem cells (SSC) as a donor cell type. In the present study, cell cycle analysis indicates that the porcine SSC proliferate rapidly in vitro. The porcine SSC are capable of producing live offspring and can be genetically modified with positive selection. Utilization of porcine SSC may prove to be an excellent cell type for genetic modification followed by nuclear transfer for the production of transgenic pigs.


Assuntos
Animais Geneticamente Modificados , Clonagem de Organismos/métodos , Técnicas de Transferência Nuclear , Pele/citologia , Células-Tronco/fisiologia , Suínos/genética , Animais , Técnicas de Cultura de Células , Proliferação de Células , Repetições de Microssatélites , Microscopia Eletrônica de Transmissão , Células-Tronco/citologia , Células-Tronco/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA