Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39058535

RESUMO

A polyphasic taxonomic approach was used to characterize the three bacterial strains (FP830T, FP2034, and FP2262) isolated from the rhizosphere soil of rice, corn, and highland barley in Beijing, Heilongjiang, and Tibet, respectively, in PR China. These strains were Gram-negative, rod-shaped, and have one or two polar flagella. They exhibited optimal growth at 28 °C and pH 7.0 in the presence of 1 % (w/v) NaCl and showed fluorescence under ultraviolet light when cultivated on King's B plates. The FP830T genome size is 6.4 Mbp with a G+C content of 61.0 mol%. FP830T has the potential to promote plant growth by producing various metabolites such as fengycin, pyoverdin, indole-3-acetic acid, and the volatile substance 2,3-butanediol. Phylogenetic analysis indicated that three isolates formed an independent branch, which most closely related to type strains Pseudomonas thivervalensis DSM 13194T and Pseudomonas zanjanensis SWRI12T. The values of average nucleotide identity and digital DNA-DNA hybridization between three isolates and closest relatives were not higher than 93.7 and 52.3 %, respectively. The dominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, and aminophospholipid. The predominant respiratory quinone was ubiquinone (Q-9). Based on polyphasic taxonomic analysis, it was concluded that strains FP830T, FP2034, and FP2262 represented a novel species within the genus Pseudomonas, and Pseudomonas beijingensis sp. nov. was proposed for the name of novel species. The type strain is FP830T (=ACCC 62448T=JCM 35689T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Oryza , Filogenia , Pseudomonas , RNA Ribossômico 16S , Rizosfera , Análise de Sequência de DNA , Microbiologia do Solo , Pseudomonas/genética , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , China , Ácidos Graxos/análise , Oryza/microbiologia , Hordeum/microbiologia , Zea mays/microbiologia , Tibet
2.
Microorganisms ; 12(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792773

RESUMO

Plant growth-promoting rhizobacterial strain FP607T was isolated from the rhizosphere of beets in Wuhan, China. Strain FP607T exhibited significant antagonism toward several phytopathogenic bacteria, indicating that FP607T may produce antimicrobial metabolites and has a stronger biocontrol efficacy against plant pathogens. Growth-promoting tests showed that FP607T produced indole-3-acetic acid (IAA), NH3, and ferritin. The genome sequence of strain FP607T was 6,590,972 bp long with 59.0% G + C content. The optimum temperature range was 25-30 °C, and the optimum pH was 7. The cells of strain FP607T were Gram-negative, short, and rod-shaped, with polar flagella. The colonies on the King's B (KB) agar plates were light yellow, smooth, and circular, with regular edges. A phylogenetic analysis of the 16S rRNA sequence and a multilocus sequence analysis (MLSA) showed that strain FP607T was most closely related to the type of strain Pseudomonas farris SWRI79T. Based on a polyphasic taxonomic approach, strain FP607T was identified as a novel species within the genus Pseudomonas, for which the name Pseudomonas wuhanensis sp. nov. was proposed. The type of strain used was FP607T (JCM 35688, CGMCC 27743, and ACCC 62446).

3.
Artigo em Inglês | MEDLINE | ID: mdl-38536209

RESUMO

Three bacterial strains, FP250T, FP821, and FP53, were isolated from the rhizosphere soil of oilseed rape, licorice, and habanero pepper in Anhui Province, Xinjiang Uygur Autonomous Region, and Jiangsu Province, PR China, respectively. All strains were shown to grow at 4-37 °C and pH 6.0-9.0, and in the presence of 0-4.0 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences or housekeeping genes (16S rRNA, gyrB, rpoB, and rpoD) and phylogenomic analysis showed that strains FP250T, FP821, and FP53 belong to the genus Pseudomonas, and are closely related to Pseudomonas kilonensis DSM 13647T, Pseudomonas brassicacearum JCM 11938T, Pseudomonas viciae 11K1T, and Pseudomonas thivervalensis DSM 13194T. The DNA G+C content of strain FP205T was 59.8 mol%. The average nucleotide identity and digital DNA-DNA hybridization values of strain FP205T with the most closely related strain were 93.2 % and 51.4 %, respectively, which is well below the threshold for species differentiation. Strain FP205T contained summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) as major fatty acids, and diphosphatidylglycerol along with phosphatidylethanolamine and aminophospholipid as major polar lipids. The predominant isoprenoid quinone was ubiquinone-9. Based on these phenotypic, phylogenetic, and chemotaxonomic results, strain FP205T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas hefeiensis sp. nov. is proposed. The type strain is FP205T (=ACCC 62447T=JCM 35687T).


Assuntos
Ácidos Graxos , Rizosfera , Composição de Bases , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , China
4.
J Genet Genomics ; 50(5): 341-352, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35597445

RESUMO

Ralstonia solanacearum is a widespread plant bacterial pathogen that can launch a range of type III effectors (T3Es) to cause disease. In this study, we isolate a pathogenic R. solanacearum strain named P380 from tomato rhizosphere. Five out of 12 core T3Es of strain P380 are introduced into Pseudomonas syringae DC3000D36E separately to determine their functions in interacting with plants. DC3000D36E that harbors each effector suppresses FliC-triggered Pti5 and ACRE31 expression, ROS burst, and callose deposition. RipAE, RipU, and RipW elicit cell death as well as upregulate the MAPK cascades in Nicotiana benthamiana. The derivatives RipC1ΔDXDX(T/V) and RipWΔDKXXQ but not RipAEK310R fail to suppress ROS burst. Moreover, RipAEK310R and RipWΔDKXXQ retain the cell death elicitation ability. RipAE and RipW are associated with salicylic acid and jasmonic acid pathways, respectively. RipAE and RipAQ significantly promote the propagation of DC3000D36E in plants. The five core T3Es localize in diverse subcellular organelles of nucleus, plasma membrane, endoplasmic reticulum, and Golgi network. The suppressor of G2 allele of Skp1 is required for RipAE but not RipU-triggered cell death in N. benthamiana. These results indicate that the core T3Es in R. solanacearum play diverse roles in plant-pathogen interactions.


Assuntos
Ralstonia solanacearum , Ralstonia solanacearum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA