RESUMO
BACKGROUND: The estimated glomerular filtration rate based on cystatin C (eGFRcys) and creatinine (eGFRcr) may differ substantially within an individual. The clinical implications of these differences (eGFRdiff) for depressive symptoms risk are unknown and whether it differed by sex are also unknown. METHODS: The prospective cohort study enrolled 3443 participants aged ≥45 years from the 2011-2020 waves of the China Health and Retirement Longitudinal Study. The eGFRdiff was calculated by eGFRcys minus eGFRcr at baseline. Depressive symptoms were measured by the ten-item Center for Epidemiologic Studies Depression Scale. Unadjusted and adjust logistic regression models were used to investigate the relationship between eGFRdiff and depressive symptoms. RESULTS: 1628 (47.3 %) females and 1815 (52.7 %) males were analyzed in the present study. When considering eGFRdiff as a continuous variable, multivariate logistic regression analysis showed that higher eGFRdiff was associated with reduced depressive symptoms in females (OR = 0.985, 95%CI 0.976-0.995, p-value = 0.020), not in males (OR = 0.996, 95%CI 0.988-1.003, p-value = 0.280). The associations remained similar when comparing individuals across different eGFRdiff categories. CONCLUSIONS: In this 9-year follow-up cohort study, baseline eGFRdiff was negatively associated with depressive symptoms among community-dwelling middle-aged and older females, but not males. Monitoring eGFRdiff could have clinical utility in identifying the risk of accelerated depressive symptoms progression in females.
RESUMO
Radioactive safety in nuclear facilities is of utmost importance. Prior to workers entering these areas, a 3D radiation field is needed for accurately estimating their exposure. Due to the complex relationship between radiation measurements and radiation fields, implementing neural networks is a promising approach for reconstruction. However, research on direct 3D radiation field reconstruction using neural networks is limited, and there is no standardized open-source dataset for training and evaluation. To address these issues, we created a simplified model of a nuclear facility and utilized the Monte Carlo program MCShield to simulate 3D radiation parameters. MCShield, which is mainly used for shielding calculations, has been verified for accuracy through benchmark tests. In addition, this paper proves the correctness of the MCShield program and the effectiveness of the AIS variance reduction method through calculations on the WinFrith Iron benchmark experiment and the NUREG/CR-6115 benchmark. The results show that the MCShield program as well as the AIS method can be used for dataset calculations.
RESUMO
Novel adjuvants and innovative combinations of adjuvants (Adjuvant Systems) have facilitated the development of enhanced and new vaccines against re-emerging and challenging pathogenic microorganisms. Nonetheless, the efficacy of adjuvants is influenced by various factors, and the same adjuvant may generate entirely different immune responses when paired with different antigens. Herein, we combined the MPXV-B6R antigen with BC02, a novel adjuvant with proprietary technology, to assess its capability to induce both cellular and humoral immunity in mouse models. Mice received two intramuscular injections of B6R-BC02, which resulted in the production of MPXV-specific IgG, IgG1, and IgG2a antibodies. Additionally, it elicited strong MPXV-specific Th1-oriented cellular immunity and persistent effector memory B-cell responses. The advantages of BC02 were further validated, including rapid initiation of the immune response, robust recall memory, and sustained immune response induction. Although the potential of immunized mice to produce serum-neutralizing antibodies against the vaccinia virus requires further improvement, the exceptional performance of BC02 as an adjuvant for the MPXV-B6R antigen has been consistently demonstrated.
RESUMO
OBJECTIVE: Clinical applications of FLASH radiotherapy require formulas to describe how the FLASH radiation features and other related factors determine the FLASH effect. Mathematical analysis of the models can connect the theoretical hypotheses with the radiobiological effect, which provides the foundation for establishing clinical application models. Moreover, experimental and clinical data can be used to explore the key factors through mathematical analysis. Approach: We abstract the complex models of the oxygen depletion hypothesis and radical recombination-antioxidants hypothesis into concise mathematical equations. The equations are solved to analyze how the radiation features and other factors influence the FLASH effect. Then we propose methodologies for determining the parameters in the models and utilizing the models to predict the FLASH effect. Main results: The formulas linking the physical, chemical and biological factors to the FLASH effect are obtained through mathematical derivation of the equation. The analysis indicates that the initial oxygen concentration, radiolytic oxygen consumption and oxygen recovery are key factors for the oxygen depletion hypothesis and that the level of antioxidants is the key factor for the radical recombination-antioxidants hypothesis. According to the model derivations and analysis, the methodologies for determining parameters and predicting the FLASH effect are proposed: the criteria for data filtration; the strategy of hybrid FLASH and conventional dose rate (CONV) irradiation to ensure the acquisition of effective experimental data across a wide dose range; pipelines of fitting parameters and predicting the FLASH effect. Significance: This study establishes the quantitative relationship between the FLASH effect and key factors. The derived formulas can be used to calculate the FLASH effect in future clinical FLASH radiotherapy. The proposed methodologies guide to obtain sufficient high-quality datasets and utilize them to predict FLASH effect. Furthermore, this study indicates the key factors of FLASH effect and offers clues to further explore the FLASH mechanism.
RESUMO
The blockade of programmed death-ligand 1 (PD-L1) pathway has been clinically used in cancer immunotherapy, while its effects on infectious diseases remain elusive. Roles of PD-L1 signaling in the macrophage-mediated innate immune defense against M.tb is unclear. In this study, the outcomes of tuberculosis (TB) in wild-type (WT) mice treated with anti-PD-1/PD-L1 therapy and macrophage-specific Pdl1-knockout (Pdl1ΔΜΦ) mice were compared. Treatment with anti-PD-L1 or anti-PD-1 benefited protection against M.tb infection in WT mice, while Pdl1ΔΜΦ mice exhibited the increased susceptibility to M.tb infection. Mechanistically, the absence of PD-L1 signaling impaired M.tb killing by macrophages. Furthermore, elevated STAT3 activation was found in PD-L1-deficient macrophages, leading to increased interleukin (IL)-6 production and reduced inducible nitric oxide synthase (iNOS) expression. Inhibiting STAT3 phosphorylation partially impeded the increase in IL-6 production and restored iNOS expression in these PD-L1-deficient cells. These findings provide valuable insights into the complexity and mechanisms underlying anti-PD-L1 therapy in the context of tuberculosis.
Assuntos
Antígeno B7-H1 , Interleucina-6 , Macrófagos , Camundongos Knockout , Mycobacterium tuberculosis , Fator de Transcrição STAT3 , Transdução de Sinais , Tuberculose , Animais , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/imunologia , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Regulação para Cima , Imunidade Inata , FemininoRESUMO
Objective. Establishing realistic phantoms of human anatomy is a continuing concern within virtual clinical trials of breast x-ray imaging. However, little attention has been paid to glandular distribution within these phantoms. The principal objective of this study was to develop breast phantoms considering the clinical glandular distribution.Approach. This research introduces an innovative method for integrating glandular distribution information into breast phantoms. We have developed an open-source software, THUBreast44http://github.com/true02Hydrogen/THUBreast/, which generates breast phantoms that accurately replicate both the structural texture and glandular distribution, two crucial elements in breast x-ray imaging and dosimetry. To validate the efficacy of THUBreast, we assembled three groups of breast phantoms (THUBreast, patient-based, homogeneous) for irradiation simulation and calculated the power-law exponents (ß) and mean glandular dose (Dg), indicators of texture realism and radiation risk, respectively, utilizing MC-GPU.Main results. Upon the computation of theDgfor the THUBreast phantoms, it was found to be in agreement with that absorbed by the phantoms based on patients, with an average deviation of 4%. The estimates of averageDgthus obtained were on average 23% less than those computed for the homogeneous phantoms. It was observed that the homogeneous phantoms did overestimate the averageDgby 30% when compared to the phantoms based on patients. The mean value ofßfor the images of THUBreast phantoms was found to be 2.92 ± 0.08, which shows a commendable agreement with the findings of prior investigations.Significance. It is evidently clear from the results that THUBreast phantoms have a preliminary good performance in both imaging and dosimetry in terms of indicators of texture realism and glandular dose. THUBreast represents a further step towards developing a powerful toolkit for comprehensive evaluation of image quality and radiation risk.
Assuntos
Mama , Mamografia , Humanos , Raios X , Mama/diagnóstico por imagem , Mamografia/métodos , Radiometria/métodos , Software , Imagens de Fantasmas , Método de Monte CarloRESUMO
PURPOSE: Oxygen plays a crucial role in radiation biology. Antioxidants and peroxyl radicals affect the oxygen effect greatly. This study aims to establish a computational model of the oxygen effect and explore the effect attributed to antioxidants and peroxyl radicals. MATERIALS AND METHODS: Oxygen-related reactions are added to our track-structure Monte Carlo code NASIC, including oxygen fixation, chemical repair by antioxidants and damage migration from base-derived peroxyl radicals. Then the code is used to simulate the DNA damage under various oxygen, antioxidant and damage migration rate conditions. The oxygen enhancement ratio(OER) is calculated quantifying by the number of double-strand breaks for each condition. The roles of antioxidants and peroxyl radicals are examined by manipulating the relevant parameters. RESULTS AND CONCLUSIONS: Our results indicate that antioxidants are capable of rapidly restoring DNA radicals through chemical reactions, which compete with natural and oxygen fixation processes. Additionally, antioxidants can react with peroxyl radicals derived from bases, thereby preventing the damage from migrating to DNA strands. By quantitatively accounting for the impact of peroxyl radicals and antioxidants on the OER curves, our study establishes a more precise and comprehensive model of the radiation oxygen effect.
Assuntos
Antioxidantes , Oxigênio , Antioxidantes/farmacologia , Antioxidantes/química , Radicais Livres/química , Radicais Livres/efeitos da radiação , Método de Monte Carlo , Peróxidos , DNA/efeitos da radiaçãoRESUMO
Mesenchymal stem cells-derived exosomes (MSC-Exo) are considered to have great potential in the treatment of human diseases. However, the role of MSC-Exo in the process of diabetes with sepsis and the underlying molecular mechanism remain unclear. Human pulmonary microvascular endothelial cells (HPMECs) were treated with high glucose (HG) and lipopolysaccharide (LPS). Cell viability, migration, angiogenesis were analyzed by cell counting kit 8 assay, transwell assay and tube formation assay. Transmembrane electrical resistance (TER) detection and FITC-dextran assay were performed to evaluate cell barrier function. The protein levels of cell permeability-related markers, ferroptosis-related markers, exosomes-related markers, Nrf2 and HO-1 were examined using western bolt (WB) analysis. Besides, the levels of inflammation factors were tested by ELISA, and the levels of ferroptosis-related indicators were examined using corresponding assay kits. Flow cytometry was employed to analyze stem cell markers. The identification of MSC-Exo was performed using transmission electron microscopy, nanoparticle tracking analysis and WB analysis. DIO staining was used to examine the uptake of MSC-Exo by HPMECs. HG treatment suppressed HPMECs viability, migration, angiogenesis and TER, while promoted permeability, inflammation and ferroptosis. LPS treatment aggravated HG-induced HPMECs dysfunction, inflammation and ferroptosis. After HPMECs were co-cultured with MSC-Exo, cell injury induced by HG + LPS could be relieved. Moreover, MSC-Exo treatment enhanced the activity of Nrf2/HO-1 pathway in HG + LPS-induced HPMECs, and Nrf2-silenced MSC-Exo could promote HG + LPS-induced HPMECs injury. MSC-Exo alleviated HG + LPS-induced HPMECs injury via activating Nrf2/HO-1 pathway, confirming that it might be used for the treatment of diabetes with sepsis.
Assuntos
Diabetes Mellitus , Exossomos , Células-Tronco Mesenquimais , Sepse , Humanos , Células Endoteliais/metabolismo , Lipopolissacarídeos/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Diabetes Mellitus/metabolismo , Sepse/terapia , Glucose/metabolismoRESUMO
Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix in the myocardium with cardiac fibroblast activation, leading to chronic cardiac remodeling and dysfunction. However, little is known about metabolic alterations in fibroblasts during cardiac fibrosis, and there is a lack of pharmaceutical treatments that target metabolic dysregulation. Here, we provided evidence that fatty acid ß-oxidation (FAO) dysregulation contributes to fibroblast activation and cardiac fibrosis. With transcriptome, metabolome, and functional assays, we demonstrated that FAO was downregulated during fibroblast activation and cardiac fibrosis, and that perturbation of FAO reversely affected the fibroblast-to-myofibroblast transition. The decrease in FAO may be attributed to reduced long-chain fatty acid (LCFA) uptake. Voltage-dependent anion channel 1 (VDAC1), the main gatekeeper of the outer mitochondrial membrane (OMM), serves as the transporter of LCFA into the mitochondria for further utilization and has been shown to be decreased in myofibroblasts. In vitro, the addition of exogenous VDAC1 was shown to ameliorate cardiac fibroblast activation initiated by transforming growth factor beta 1 (TGF-ß1) stimuli, and silencing of VDAC1 displayed the opposite effect. A mechanistic study revealed that VDAC1 exerts a protective effect by regulating LCFA uptake into the mitochondria, which is impaired by an inhibitor of carnitine palmitoyltransferase 1A. In vivo, AAV9-mediated overexpression of VDAC1 in myofibroblasts significantly alleviated transverse aortic constriction (TAC)-induced cardiac fibrosis and rescued cardiac function in mice. Finally, we treated mice with the VDAC1-derived R-Tf-D-LP4 peptide, and the results showed that R-Tf-D-LP4 prevented TAC-induced cardiac fibrosis and dysfunction in mice. In conclusion, this study provides evidence that VDAC1 maintains FAO metabolism in cardiac fibroblasts to repress fibroblast activation and cardiac fibrosis and suggests that the VDAC1 peptide is a promising drug for rescuing fibroblast metabolism and repressing cardiac fibrosis.
Assuntos
Fibroblastos , Canal de Ânion 1 Dependente de Voltagem , Animais , Camundongos , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Fibrose , Peptídeos/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismoRESUMO
To achieve maximum efficacy, vaccines, such as subunit, recombinant, and conjugate vaccines, necessitate the incorporation of immunostimulators/adjuvants. Adjuvants play a vital role in bolstering and extending the strength of the immune response while also influencing its type. As antigen and adjuvant formulations become more intricate, it becomes imperative to establish a well-characterized and robust formulation to ensure consistent and reproducible outcomes in preclinical and clinical studies. In the present study, an HPV bivalent vaccine was developed using a BC02 adjuvant in conjunction with HPV 16 and 18 L1 VLP antigens produced from an E. coli expression system. The study involved evaluating the adjuvant formulation and in vivo immunogenicity in mice. Remarkably, a medium-dose of BCG-CpG-DNA combined with a low-dose of aluminum hydroxide substantially enhanced the immunogenicity of HPV16 and 18 VLPs, resulting in improved cellular and humoral immune responses.
RESUMO
Cadmium pollution in farmland has become a global environmental problem, threatening ecological security and human health. Biochar is effective in remediation of soil pollution. However, high concentrations of biochar can inhibit plant growth, and low concentrations of biochar have limited mitigation effect on cadmium toxicity. Therefore, the combination of low-concentration biochar and other amendments is a promising approach to alleviate cadmium toxicity in plants and improve the safety of edible parts. In this study, muskmelon was selected as the research object, and different concentrations of α-Fe2O3 nanoparticles were used alone or combined with biochar to explore the effects of different treatments on muskmelon plants in cadmium-contaminated soil. The results showed that the combined application of 250 mg/kg α-Fe2O3 nanoparticles and biochar had a good effect on the repair of cadmium toxicity in muskmelon plants. Compared with cadmium treatment, its application increased plant height by 32.53%, cadmium transport factor from root to stem decreased by 32.95%, chlorophyll content of muskmelon plants increased by 14.27%, and cadmium content in muskmelon flesh decreased by 18.83%. Moreover, after plant harvest, soil available cadmium content in 250 mg/kg α-Fe2O3 nanoparticles and biochar combined treatment decreased by 31.18% compared with cadmium treatment. The results of this study provide an effective reference for the composite application of different exogenous amendments and a feasible idea for soil heavy metal remediation and mitigation of cadmium pollution in farmland.
Assuntos
Nanopartículas , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Frutas/química , Carvão Vegetal/farmacologia , Solo , Nanopartículas/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/análiseRESUMO
Cadmium pollution in agricultural soil is a great threat to crop growth and human health. In this research, with 1%, 3% and 5% biochar applied to control soil cadmium pollution, melon was selected to be the experimental object for physiological detection and transcriptome analysis, through which we explored the mechanism of cadmium tolerance and biochar mitigating cadmium stress in muskmelon. Three set concentrations of biochar have a mitigative effect on muskmelon cadmium stress, and 5% biochar and 3% biochar respectively have the best and the worst alleviative effect. The alleviation of biochar to cadmium stress on muskmelon is primarily in the manner of inhibiting cadmium transfer, while the resistance of muskmelon to cadmium stress is through activating phenylpropanoid pathway and overexpressing stress related genes. Under cadmium treatment, 11 genes of the phenylpropane pathway and 19 stress-related genes including cytochrome P450 family protein genes and WRKY transcription factor genes were up-regulated, while 1%, 3%, 5% biochar addition significantly downregulated 3, 0, 7 phenylpropane pathway genes and 17, 5, 16 stress-related genes, respectively. Genes such as cytochrome P450 protein family genes, WRKY transcription factor genes, and annexin genes may play a key role in muskmelon's resistance to cadmium stress. The results show the key pathways and genes of cadmium stress resistance and the effect of different concentrations of biochar in alleviating cadmium stress, which provide a reference for the research of cadmium stress resistance in crops and the application of biochar in cadmium pollution in agricultural soil.
Assuntos
Cádmio , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Transcriptoma , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Carvão Vegetal/farmacologia , Solo , Fatores de Transcrição , Sistema Enzimático do Citocromo P-450RESUMO
Aim: This study was to analyze and compare the predictive performance of the 7th and the 8th edition American Joint Committee on Cancer (AJCC) N staging system, lymph nodes ratio (LNR) and log odds of positive lymph node (LODDS) for the survival of patients with ampullary carcinomas (ACs). Method: This retrospective cohort study included patients with primary ACs after surgery from the Surveillance, Epidemiology, and End Results (SEER) 2004-2015. Univariate and multivariate Cox proportional hazard models were used. The study population was divided into a training set and a testing set in a ratio of 7-3. The C-index and area under the curve (AUC) were used to compare the predictive performance of the four staging on overall survival (OS) in the training set and the testing set. Results: A total of 7,480 patients with primary ACs (1,178 survived and 1,128 dead) were in this study. The average follow-up time was 41.1 months. N1 stage and N2 stage of the 8th edition AJCC N staging system, LNR staging (0-0.3), LNR (>0.3), LODDS (-2.4 to -0.8) and LODDS (>-0.8) were associated with OS in AC patients after adjusting for age, race, pT stage, tumor size, grade, radiation, and insurance. The C-index of the 7th AJCC N staging was significantly lower than the C-index of the 8th AJCC N staging in the training set [0.608 vs. 0.629, P < 0.001] and testing set [0.635 vs. 0.658, P < 0.001]. The C-index of the LODDS staging was significantly higher than the C-index of the 8th AJCC N staging in the training set [0.641 vs. 0.629, P = 0.034] and testing set [0.671 vs. 0.658, P = 0.034]. LODDS staging may be a potential predictor of OS at 6 months [AUC = 0.687], 12 months (AUC = 0.692), and 48 months (AUC = 0.709), and LNR staging (AUC = 0.655) may be a potential predictor of OS at 24 months in AC patients. The predictive ability of LNR staging and LODDS staging were also found in different subgroups. Conclusion: The LNR and LODDS staging systems' predictive performance for OS of AC patients were superior to the 8th edition AJCC N staging system, especially in patients ages ≥65 or with higher tumor grade (grade II and III). The LNR staging and the LODDS staging were potential predictors for 24-month OS, and 6, 12, 24 and 48-month OS, respectively.
RESUMO
Cadmium is toxic to plants. The accumulation of cadmium in edible plants such as muskmelon may affect the safe production of crops and result in human health problem. Thus effective measures are urgently needed for soil remediation. This work aims to investigate the effects of nano-ferric oxide and biochar alone or mixture on muskmelon under cadmium stress. The results of growth and physiological indexes showed that compared with the application of cadmium alone, the composite treatment (biochar and nano-ferric oxide) decreased malondialdehyde content by 59.12% and ascorbate peroxidase activity increased by 276.6%. Their addition can increase the stress resistance of plants. The results of soil analysis and cadmium content determination in plants showed that the composite treatment was beneficial to reduce the cadmium content in various parts of muskmelon. In the presence of high concentration of cadmium, the Target Hazard Quotient value of peel and flesh of muskmelon in the composite treatment was less than 1, which means the edible risk was greatly reduced. Furthermore, the addition of composite treatment increased the content of effective components; the contents of polyphenols, flavonoids, and saponins in the flesh of the compound treatment were increased by 99.73%, 143.07%, and 18.78% compared with the cadmium treatment. The results provide a technical reference for the further application of biochar combined with nano-ferric oxide in the field of soil heavy metal remediation, and provide a theoretical basis for further research on reducing the toxicity of cadmium to plants and improving the edible quality of crops.
Assuntos
Cádmio , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo , Carvão Vegetal/farmacologia , Produtos Agrícolas , Óxidos/análiseRESUMO
Phantoms of different sizes, as indicated by several studies, have a significant impact on the accuracy of dose calculations. Therefore, it is necessary to establish a body-size-dependent series of Chinese standing adult phantoms to improve the accuracy of radiation dosimetry. In this study, the Chinese reference polygon-mesh phantomsCRAM_S/CRAF_Shave been refined and a method for automatically constructing lymph nodes in a mesh phantom has been proposed. Then, based on the refined phantoms, this study has developed 42 anthropometric standing adult computational phantoms, 21 models for each gender, with a height range of 145-185 cm and weight as a function of body mass index corresponding to healthy, overweight and obese. The parameters were extracted from the National Occupational Health Standards (GBZ) document of the People's Republic of China, which covers more than 90% of the Chinese population. For a given body height and mass, phantoms are scaled in proportion to a factor reflecting the change of adipose tissue and the internal organs. The remainder is adjusted manually to match the target parameters. In addition, the constructed body-size-specific phantoms have been implemented in the in-house THUDose Monte Carlo code to calculate the dose coefficients (DCs) for external photon exposures in the antero-posterior, postero-anterior and right lateral geometries. The results showed that organ DCs varied significantly with body size at low energies (<2MeV) and high energies (>8MeV) due to the differences in anatomy. Organ DC differences between a phantom of a given size and a reference phantom vary by up to 40% for the same height and up to 400% for the whole phantom. The influence of body size differences on the DCs demonstrates that the body-size-dependent Chinese adult phantoms hold great promise for a wide range of applications in radiation dosimetry.
Assuntos
População do Leste Asiático , Proteção Radiológica , Humanos , Adulto , Radiometria/métodos , Tamanho Corporal , Estatura , Imagens de Fantasmas , Método de Monte Carlo , Doses de RadiaçãoRESUMO
PURPOSE: FLASH (ultra-high dose rate) radiotherapy spares normal tissue while keeping tumor control. However, the mechanism of the FLASH effect remains unclear and may have consequences beyond the irradiated area. MATERIALS AND METHODS: We reanalyze the available results of ultra-high-dose-rate-related experiments to find out the key points of the mechanism of the FLASH effect. Then, we present a hypothesis on the mechanism of the FLASH effect: FLASH beams generate a high transient concentration of peroxyl radicals leading to a high fraction of radical recombination, which results in less oxidation damage to normal tissue. For the cells containing higher concentrations of antioxidants, the fractions of radical recombination are smaller because the antioxidants compete to react with peroxyl radicals. Therefore the damages by different dose rate beams differ slightly in this condition. Since some tumors contain a higher level of antioxidants, this may be the reason for the loss of the protective effect in tumors irradiated by FLASH beams. The high concentration of antioxidants in tumors results in slight radiolytic oxygen consumption, and consequently the protective effect observed in in vitro experiment cannot be observed in in vivo experiment. To quantitatively elaborate our hypothesis, a kinetic model is implemented to simulate the reactions induced by irradiation. Two parameters are defined to abstractly study the factors affecting the reaction, such as dose rate, antioxidants, total dose and reaction rate constants. RESULTS AND CONCLUSIONS: We find that the explanation of the difference between in vivo and in vitro experiments is crucial to understanding the mechanism of the FLASH effect. Our hypothesis agrees with the results of related experiments. Based on the kinetic model, the effects of these factors on the FLASH effect are quantitatively investigated.
Assuntos
Antioxidantes , Peróxidos , Antioxidantes/metabolismo , Estresse Oxidativo , Etoposídeo , Recombinação Genética , Dosagem RadioterapêuticaRESUMO
Repair of DNA damage induced by ionizing radiation plays an important role in the cell response to ionizing radiation. Radiation-induced DNA damage also activates the p53 system, which determines the fate of cells. The kinetics of repair, which is affected by the cell itself and the complexity of DNA damage, influences the cell response and fate via affecting the p53 system. To mechanistically study the influences of the cell response to different LET radiations, we introduce a new repair module and a p53 system model with NASIC, a Monte Carlo track structure code. The factors determining the kinetics of the double-strand break (DSB) repair are modeled, including the chromosome environment and complexity of DSB. The kinetics of DSB repair is modeled considering the resection-dependent and resection-independent compartments. The p53 system is modeled by simulating the interactions among genes and proteins. With this model, the cell responses to low- and high-LET irradiation are simulated, respectively. It is found that the kinetics of DSB repair greatly affects the cell fate and later biological effects. A large number of DSBs and a slow repair process lead to severe biological consequences. High-LET radiation induces more complex DSBs, which can be repaired by slow processes, subsequently resulting in a longer cycle arrest and, furthermore, apoptosis and more secreting of TGFß. The Monte Carlo track structure simulation with a more realistic repair module and the p53 system model developed in this study can expand the functions of the NASIC code in simulating mechanical radiobiological effects.
Assuntos
Quebras de DNA de Cadeia Dupla , Proteína Supressora de Tumor p53 , Dano ao DNA , Reparo do DNA , Transferência Linear de Energia , Radiação Ionizante , Fator de Crescimento Transformador beta/genética , Proteína Supressora de Tumor p53/genéticaRESUMO
Objective To clarify the hotspots and trends of multimorbidity research and to provide evidence for further research in China. Methods Papers on multimorbidity were retrieved from PubMed and Web of Science (from inception to August 11,2021).BICOMB and gCLUTO were used for bibliometric and clustering analysis,and CiteSpace was employed for analysis of authors and citations,and burst detection of keywords. Results The research on multimorbidity has been on the rise.Among the authors,Mercer SW published the most papers on this topic and Fortin M was the most cited author.Karolinska Institute topped the institutions in the number of published papers,and the paper published in Lancet by Barnett K in 2012 was the most cited.A total of 75 high-frequency keywords were extracted,on the basis of which seven research hotspots were summarized:epidemiology (including the prevalence and trend),medication (involving polypharmacy,medication compliance,etc.),medical expenditure (including cost and medical services),aging (such as elderly patients,frailty,and disability),psychology (involving mental health,social support,etc.),multimorbidity management (such as the treatment,primary health care,and integrated care),and comorbidity of cardiovascular and metabolic diseases (involving obesity,stroke,diabetes,etc.). Conclusions Multimorbidity is concerned as a major health threat and public health problem worldwide.The management of multimorbidity is more complex than that of one disease,which thus faces more challenges.Therefore,researchers,health care providers,and policy-makers should underscore it.
Assuntos
Bibliometria , Multimorbidade , Idoso , China/epidemiologia , Comorbidade , HumanosRESUMO
Muskmelon pedicel is the fruit stalk of muskmelon and one of the traditional Chinese medicines, which can be used to treat jaundice, diabetes and neuropathy. However, in recent years, agricultural soil heavy metal cadmium (Cd) pollution has become serious, coupled with the imperfect sales management of herbal medicine, increasing the potential health risk of contaminated herbal medicine in the human body. In this paper, the comprehensive quality of contaminated muskmelon was tested. The results showed that Cd stress significantly inhibited the growth of muskmelon plants, reduced the anthocyanin and chlorophyll contents, and increased the fruit size and sweetness of muskmelon. In addition, heavy metal Cd can also cause oxidative stress in plants, resulting in a series of changes in antioxidant enzyme activities. In the experimental group, the content of polyphenols and saponins increased by 27.02% and 23.92%, respectively, after high-concentration Cd treatment, which may be a mechanism of plant resistance to stress. This paper reveals that the content of bioactive substances in Chinese herbal medicine is high, but the harm in heavy metals cannot be underestimated, which should be paid attention to by relevant departments.