Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Adv Sci (Weinh) ; 11(31): e2308307, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39166458

RESUMO

Aloperine (ALO), a quinolizidine-type alkaloid isolated from a natural Chinese herb, has shown promising antitumor effects. Nevertheless, its common mechanism of action and specific target remain elusive. Here, it is demonstrated that ALO inhibits the proliferation and migration of non-small cell lung cancer cell lines in vitro and the tumor development in several mouse tumor models in vivo. Mechanistically, ALO inhibits the fusion of autophagosomes with lysosomes and the autophagic flux, leading to the accumulation of sequestosome-1 (SQSTM1) and production of reactive oxygen species (ROS), thereby inducing tumor cell apoptosis and preventing tumor growth. Knockdown of SQSTM1 in cells inhibits ROS production and reverses ALO-induced cell apoptosis. Furthermore, VPS4A is identified as a direct target of ALO, and the amino acids F153 and D263 of VPS4A are confirmed as the binding sites for ALO. Knockout of VPS4A in H1299 cells demonstrates a similar biological effect as ALO treatment. Additionally, ALO enhances the efficacy of the anti-PD-L1/TGF-ß bispecific antibody in inhibiting LLC-derived subcutaneous tumor models. Thus, ALO is first identified as a novel late-stage autophagy inhibitor that triggers tumor cell death by targeting VPS4A.


Assuntos
Autofagossomos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Lisossomos , Quinolizidinas , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Linhagem Celular Tumoral , Quinolizidinas/farmacologia , Modelos Animais de Doenças , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Progressão da Doença , Proliferação de Células/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos
2.
Clin Pharmacol Ther ; 116(3): 637-646, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38962850

RESUMO

Bispecific T-cell Engagers (TCEs) are promising anti-cancer treatments that bind to both the CD3 receptors on T cells and an antigen on the surface of tumor cells, creating an immune synapse, leading to killing of malignant tumor cells. These novel therapies have unique development challenges, with specific safety risks of cytokine release syndrome. These on-target adverse events fortunately can be mitigated and deconvoluted from efficacy via innovative dosing strategies, making clinical pharmacology key in the development of these therapies. This review assesses dose selection and the role of quantitative clinical pharmacology in the development of the first eight approved TCEs. Model informed drug development (MIDD) strategies can be used at every stage to guide TCE development. Mechanistic modeling approaches allow for (1) efficacious yet safe first-in-human dose selection as compared with in vitro minimum anticipated biological effect level (MABEL) approach; (2) rapid escalation and reducing number of patients with subtherapeutic doses through model-based adaptive design; (3) virtual testing of different step-up dosing regimens that may not be feasible to be evaluated in the clinic; and (4) selection and justification of the optimal clinical step-up and full treatment doses. As the knowledge base around TCEs continues to grow, the relevance and utilization of MIDD strategies for supporting the development and dose optimization of these molecules are expected to advance, optimizing the benefit-risk profile for cancer patients.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Linfócitos T , Humanos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Neoplasias/tratamento farmacológico , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Desenvolvimento de Medicamentos/métodos , Relação Dose-Resposta a Droga , Animais , Farmacologia Clínica/métodos
3.
J Clin Transl Hepatol ; 12(7): 646-658, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38993510

RESUMO

Background and Aims: As practice patterns and hepatitis C virus (HCV) genotypes (GT) vary geographically, a global real-world study from both East and West covering all GTs can help inform practice policy toward the 2030 HCV elimination goal. This study aimed to assess the effectiveness and tolerability of DAA treatment in routine clinical practice in a multinational cohort for patients infected with all HCV GTs, focusing on GT3 and GT6. Methods: We analyzed the sustained virological response (SVR12) of 15,849 chronic hepatitis C patients from 39 Real-World Evidence from the Asia Liver Consortium for HCV clinical sites in Asia Pacific, North America, and Europe between 07/01/2014-07/01/2021. Results: The mean age was 62±13 years, with 49.6% male. The demographic breakdown was 91.1% Asian (52.9% Japanese, 25.7% Chinese/Taiwanese, 5.4% Korean, 3.3% Malaysian, and 2.9% Vietnamese), 6.4% White, 1.3% Hispanic/Latino, and 1% Black/African-American. Additionally, 34.8% had cirrhosis, 8.6% had hepatocellular carcinoma (HCC), and 24.9% were treatment-experienced (20.7% with interferon, 4.3% with direct-acting antivirals). The largest group was GT1 (10,246 [64.6%]), followed by GT2 (3,686 [23.2%]), GT3 (1,151 [7.2%]), GT6 (457 [2.8%]), GT4 (47 [0.3%]), GT5 (1 [0.006%]), and untyped GTs (261 [1.6%]). The overall SVR12 was 96.9%, with rates over 95% for GT1/2/3/6 but 91.5% for GT4. SVR12 for GT3 was 95.1% overall, 98.2% for GT3a, and 94.0% for GT3b. SVR12 was 98.3% overall for GT6, lower for patients with cirrhosis and treatment-experienced (TE) (93.8%) but ≥97.5% for treatment-naive patients regardless of cirrhosis status. On multivariable analysis, advanced age, prior treatment failure, cirrhosis, active HCC, and GT3/4 were independent predictors of lower SVR12, while being Asian was a significant predictor of achieving SVR12. Conclusions: In this diverse multinational real-world cohort of patients with various GTs, the overall cure rate was 96.9%, despite large numbers of patients with cirrhosis, HCC, TE, and GT3/6. SVR12 for GT3/6 with cirrhosis and TE was lower but still excellent (>91%).

4.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38867699

RESUMO

MOTIVATION: Accurately predicting the driver genes of cancer is of great significance for carcinogenesis progress research and cancer treatment. In recent years, more and more deep-learning-based methods have been used for predicting cancer driver genes. However, deep-learning algorithms often have black box properties and cannot interpret the output results. Here, we propose a novel cancer driver gene mining method based on heterogeneous network meta-paths (MCDHGN), which uses meta-path aggregation to enhance the interpretability of predictions. RESULTS: MCDHGN constructs a heterogeneous network by using several types of multi-omics data that are biologically linked to genes. And the differential probabilities of SNV, DNA methylation, and gene expression data between cancerous tissues and normal tissues are extracted as initial features of genes. Nine meta-paths are manually selected, and the representation vectors obtained by aggregating information within and across meta-path nodes are used as new features for subsequent classification and prediction tasks. By comparing with eight homogeneous and heterogeneous network models on two pan-cancer datasets, MCDHGN has better performance on AUC and AUPR values. Additionally, MCDHGN provides interpretability of predicted cancer driver genes through the varying weights of biologically meaningful meta-paths. AVAILABILITY AND IMPLEMENTATION: https://github.com/1160300611/MCDHGN.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Algoritmos , Aprendizado Profundo , Biologia Computacional/métodos , Redes Reguladoras de Genes , Metilação de DNA , Mineração de Dados/métodos
5.
Anesthesiol Res Pract ; 2024: 4386447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938262

RESUMO

Background: Goal-directed fluid therapy (GDFT) contributes to improvements in intraoperative fluid infusion based on objective parameters and has been widely recommended in clinical practice. In addition, increasing evidence reveals that GDFT can improve the prognosis of surgical patients. However, considering the individual characteristics of colloids and crystalloids in clinical use, it is uncertain as to which type of fluids administered is associated with better outcomes in the condition of GDFT. Objectives: To evaluate the effect of colloids versus crystalloids under GDFT on prognosis in patients undergoing noncardiac surgery. Data Sources. Randomized controlled trials (RCTs) from PubMed, EMBASE, Ovid MEDLINE, CNKI, Cochrane library, and reference lists of relevant articles. Methods: Two investigators independently screened and reviewed studies for inclusion and performed data extraction. Our primary outcome was a composite of postoperative complications. The secondary outcomes were (1) mortality at the follow-up duration; (2) postoperative complications of several organ systems, including cardiac, pulmonary, digestive, urinary, nervous system, and postoperative infection events; and (3) hospital and ICU length of stay. Heterogeneity was assessed by the I 2 and chi-square tests. The odds ratio (OR) of the dichotomous data, mean difference (MD) of continuous data, and 95% confidence intervals (CI) were calculated to assess the pooled data. Results: Of 332 articles retrieved, 15 RCTs (involving 2,956 patients undergoing noncardiac surgery) were included in the final analysis. When the data were pooled, patients in the colloids and crystalloids group revealed no difference in postoperative composite complications (OR = 0.84, 95% CI = 0.51-1.38, P=0.49) under GDFT. Regarding the secondary outcomes, patients in the colloids group were associated with fewer digestive system complications (OR = 0.64, 95% CI = 0.41-0.98, P=0.04). However, no difference was found in mortality (OR = 1.37, 95% CI = 0.72-2.58, P=0.34), complications of the cardiac system (OR = 1.49, 95% CI = 0.66-3.37, P=0.34), pulmonary system (OR = 0.89, 95% CI = 0.62-1.28, P=0.53), urinary system (OR = 1.05, 95% CI = 0.61-1.80, P=0.87), nervous system (OR = 1.04, 95% CI = 0.55-1.98, P=0.90), postoperative infection events (OR = 0.89, 95% CI = 0.75-1.07, P=0.22), length of hospital stay (difference in mean = -0.71, 95% CI = -1.49-0.07, P=0.07), and ICU stay (difference in mean = -0.01, 95% CI = -0.20-0.18, P=0.95) between patients receiving GDFT with colloids or crystalloids. Conclusion: There is no evidence of a benefit in using colloids over crystalloids under GDFT in patients undergoing noncardiac surgery, despite its use resulting in lower digestive system complications.

6.
Stem Cell Res Ther ; 15(1): 169, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886773

RESUMO

With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Pele/citologia , Medicina Regenerativa/métodos , Dermatopatias/terapia , Cicatrização , Animais
7.
Int J Oral Sci ; 16(1): 40, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740746

RESUMO

Oxidative stress is increasingly recognized as a major contributor to the pathophysiology of Alzheimer's disease (AD), particularly in the early stages of the disease. The multiplicity advantages of stem cell transplantation make it fascinating therapeutic strategy for many neurodegenerative diseases. We herein demonstrated that human dental pulp stem cells (hDPSCs) mediated oxidative stress improvement and neuroreparative effects in in vitro AD models, playing critical roles in regulating the polarization of hyperreactive microglia cells and the recovery of damaged neurons. Importantly, these therapeutic effects were reflected in 10-month-old 3xTg-AD mice after a single transplantation of hDPSCs, with the treated mice showing significant improvement in cognitive function and neuropathological features. Mechanistically, antioxidant and neuroprotective effects, as well as cognitive enhancements elicited by hDPSCs, were at least partially mediated by Nrf2 nuclear accumulation and downstream antioxidant enzymes expression through the activation of the AKT-GSK3ß-Nrf2 signaling pathway. In conclusion, our findings corroborated the neuroprotective capacity of hDPSCs to reshape the neuropathological microenvironment in both in vitro and in vivo AD models, which may be a tremendous potential therapeutic candidate for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Polpa Dentária , Glicogênio Sintase Quinase 3 beta , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Polpa Dentária/citologia , Doença de Alzheimer/terapia , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Modelos Animais de Doenças , Transplante de Células-Tronco , Células-Tronco , Camundongos Transgênicos
8.
Sci Rep ; 14(1): 12044, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802480

RESUMO

This study tackles the persistent prognostic and management challenges of clear cell renal cell carcinoma (ccRCC), despite advancements in multimodal therapies. Focusing on anoikis, a critical form of programmed cell death in tumor progression and metastasis, we investigated its resistance in cancer evolution. Using single-cell RNA sequencing from seven ccRCC patients, we assessed the impact of anoikis-related genes (ARGs) and identified differentially expressed genes (DEGs) in Anoikis-related epithelial subclusters (ARESs). Additionally, six ccRCC RNA microarray datasets from the GEO database were analyzed for robust DEGs. A novel risk prognostic model was developed through LASSO and multivariate Cox regression, validated using BEST, ULCAN, and RT-PCR. The study included functional enrichment, immune infiltration analysis in the tumor microenvironment (TME), and drug sensitivity assessments, leading to a predictive nomogram integrating clinical parameters. Results highlighted dynamic ARG expression patterns and enhanced intercellular interactions in ARESs, with significant KEGG pathway enrichment in MYC + Epithelial subclusters indicating enhanced anoikis resistance. Additionally, all ARESs were identified in the spatial context, and their locational relationships were explored. Three key prognostic genes-TIMP1, PECAM1, and CDKN1A-were identified, with the high-risk group showing greater immune infiltration and anoikis resistance, linked to poorer prognosis. This study offers a novel ccRCC risk signature, providing innovative approaches for patient management, prognosis, and personalized treatment.


Assuntos
Anoikis , Biomarcadores Tumorais , Carcinoma de Células Renais , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Microambiente Tumoral , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Anoikis/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Masculino , Feminino , Perfilação da Expressão Gênica , Nomogramas
9.
Database (Oxford) ; 20242024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713861

RESUMO

Cancer immunotherapy has brought about a revolutionary breakthrough in the field of cancer treatment. Immunotherapy has changed the treatment landscape for a variety of solid and hematologic malignancies. To assist researchers in efficiently uncovering valuable information related to cancer immunotherapy, we have presented a manually curated comprehensive database called DIRMC, which focuses on molecular features involved in cancer immunotherapy. All the content was collected manually from published literature, authoritative clinical trial data submitted by clinicians, some databases for drug target prediction such as DrugBank, and some experimentally confirmed high-throughput data sets for the characterization of immune-related molecular interactions in cancer, such as a curated database of T-cell receptor sequences with known antigen specificity (VDJdb), a pathology-associated TCR database (McPAS-TCR) et al. By constructing a fully connected functional network, ranging from cancer-related gene mutations to target genes to translated target proteins to protein regions or sites that may specifically affect protein function, we aim to comprehensively characterize molecular features related to cancer immunotherapy. We have developed the scoring criteria to assess the reliability of each MHC-peptide-T-cell receptor (TCR) interaction item to provide a reference for users. The database provides a user-friendly interface to browse and retrieve data by genes, target proteins, diseases and more. DIRMC also provides a download and submission page for researchers to access data of interest for further investigation or submit new interactions related to cancer immunotherapy targets. Furthermore, DIRMC provides a graphical interface to help users predict the binding affinity between their own peptide of interest and MHC or TCR. This database will provide researchers with a one-stop resource to understand cancer immunotherapy-related targets as well as data on MHC-peptide-TCR interactions. It aims to offer reliable molecular characteristics support for both the analysis of the current status of cancer immunotherapy and the development of new immunotherapy. DIRMC is available at http://www.dirmc.tech/. Database URL: http://www.dirmc.tech/.


Assuntos
Imunoterapia , Neoplasias , Imunoterapia/métodos , Humanos , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Bases de Dados de Proteínas , Interface Usuário-Computador
10.
Cell Death Dis ; 15(4): 265, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615022

RESUMO

Antigen-specific T cell receptor-engineered T cell (TCR-T) based immunotherapy has proven to be an effective method to combat cancer. In recent years, cross-talk between the innate and adaptive immune systems may be requisite to optimize sustained antigen-specific immunity, and the stimulator of interferon genes (STING) is a promising therapeutic target for cancer immunotherapy. The level of expression or presentation of antigen in tumor cells affects the recognition and killing of tumor cells by TCR-T. This study aimed at investigating the potential of innate immune stimulation of T cells and engineered T cells to enhance immunotherapy for low-expression antigen cancer cells. We systematically investigated the function and mechanism of cross-talk between STING agonist diABZI and adaptive immune systems. We established NY-ESO-1 full knockout Mel526 cells for this research and found that diABZI activated STING media and TCR signaling pathways. In addition, the results of flow cytometry showed that antigens presentation from cancer cells induced by STING agonist diABZI also improved the affinity of TCR-T cells function against tumor cells in vitro and in vivo. Our findings revealed that diABZI enhanced the immunotherapy efficacy of TCR-T by activating STING media and TCR signaling pathways, improving interferon-γ expression, and increasing antigens presentation of tumor cells. This indicates that STING agonist could be used as a strategy to promote TCR-T cancer immunotherapy.


Assuntos
Neoplasias , Linfócitos T , Apresentação de Antígeno , Anticorpos , Citometria de Fluxo , Receptores de Antígenos de Linfócitos T , Neoplasias/terapia
11.
Front Oncol ; 14: 1370709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651158

RESUMO

Background: The status of the sentinel lymph nodes (SLNs) was an important prognostic factor in varies cancers. A one-step nucleic acid amplification (OSNA) assay, a molecular-based whole-node analysis method based on CK19 mRNA copy number, was developed to diagnose lymph node metastases. We aimed to evaluate the value of OSNA for the diagnosis of sentinel lymph node metastasis in CK19 positive cancers. CK19 mRNA and protein expression for pan-caner analysis were obtained from TCGA and the Human protein atlas database. Methods: Two researchers independently searched the PubMed, Cochrane Library and Web of Science databases for qualified articles published before December 1, 2023. A meta-analysis was performed using MetaDisc and STATA. Risk bias and quality assessments of the included studies were evaluated, and a subgroup analysis was performed. Ten cancer types were found to be CK19 positively expressed and 7 of 10 had been reported to use OSNA for SLN detection. Results: After literature review, there were 61 articles included in the meta-analysis, which consisted of 7115 patients with 18007 sentinel lymph nodes. The pooled sensitivity and specificity of OSNA were 0.87 and 0.95 in overall patients. Moreover, we found the background CK19 expression in normal tissue affected the diagnostic accuracy of OSNA. In breast cancer, we performed subgroup analysis. OSNA exhibited to be a stable method across different population groups and various medical centers. In addition, when 250 copies/µl was chosen as the cutoff point of CK19 mRNA, there were a relatively higher sensitivity and AUC in detecting SLN micro-metastasis than 5000 copies/µl. Discussion: OSNA can predict the occurrence of SLN metastasis accurately in CK19 positive cancers, especially in breast cancer, colorectal cancer, lung cancer, gastric cancer and endometrial cancer. Our study warrants future studies investigating the clinical application of OSNA in pancreatic, ovarian and bladder cancers.

12.
Mol Immunol ; 169: 1-9, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447462

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is a complex process that occurs when blood flow is restored after myocardium infarction (MI) with exacerbated tissue damage. Macrophages, essential cell type of the immune response, play an important role in MIRI. Macrophage subpopulations, namely M1 and M2, are distinguished by distinct phenotypes and functions. In MIRI, macrophages infiltrate in infarcted area, shaping the inflammatory response and influencing tissue healing. Resident cardiac macrophages interact with monocyte-derived macrophages in MIRI, and influence injury progression. Key factors including chemokines, cytokines, and toll-like receptors modulate macrophage behavior in MIRI. This review aims to address recent findings on the classification and the roles of macrophages in the myocardium, spanning from MI to subsequent MIRI, and highlights various signaling pathways implicated in macrophage polarization underlining the complexity of MIRI. This article will shed light on developing advanced therapeutic strategies for MIRI management.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Transdução de Sinais
13.
Front Med (Lausanne) ; 11: 1339573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487022

RESUMO

Bone defects resulting from severe trauma, tumors, inflammation, and other factors are increasingly prevalent. Stem cell-based therapies have emerged as a promising alternative. Dental pulp stem cells (DPSCs), sourced from dental pulp, have garnered significant attention owing to their ready accessibility and minimal collection-associated risks. Ongoing investigations into DPSCs have revealed their potential to undergo osteogenic differentiation and their capacity to secrete a diverse array of ontogenetic components, such as extracellular vesicles and cell lysates. This comprehensive review article aims to provide an in-depth analysis of DPSCs and their secretory components, emphasizing extraction techniques and utilization while elucidating the intricate mechanisms governing bone regeneration. Furthermore, we explore the merits and demerits of cell and cell-free therapeutic modalities, as well as discuss the potential prospects, opportunities, and inherent challenges associated with DPSC therapy and cell-free therapies in the context of bone regeneration.

14.
Cancer Cell Int ; 24(1): 64, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336680

RESUMO

BACKGROUND: Esophageal cancer (EC) is a global canker notorious for causing high mortality due to its relentless incidence rate, convoluted with unyielding recurrence and metastasis. However, these intricacies of EC are associated with an immoderate expression of NY-ESO-1 antigen, presenting a lifeline for adoptive T cell therapy. We hypothesized that naturally isolated higher-affinity T cell receptors (TCRs) that bind to NY-ESO-1 would allow T lymphocytes to target EC with a pronounced antitumor response efficacy. Also, targeting TRPV2, which is associated with tumorigenesis in EC, creates an avenue for dual-targeted therapy. We exploited the dual-targeting antitumor efficacy against EC. METHODS: We isolated antigen-specific TCRs (asTCRs) from a naive library constructed with TCRs obtained from enriched cytotoxic T lymphocytes. The robustness of our asTCRs and their TCR-T cell derivatives, Tranilast (TRPV2 inhibitor), and their bivalent treatment were evaluated with prospective cross-reactive human-peptide variants and tumor cells. RESULTS: Our study demonstrated that our naive unenhanced asTCRs and their TCR-Ts perpetuated their cognate HLA-A*02:01/NY-ESO-1(157-165) specificity, killing varying EC cells with higher cytotoxicity compared to the known affinity-enhanced TCR (TCRe) and its wild-type (TCR0) which targets the same NY-ESO-1 antigen. Furthermore, the TCR-Ts and Tranilast bivalent treatment showed superior EC killing compared to any of their monovalent treatments of either TCR-T or Tranilast. CONCLUSION: Our findings suggest that dual-targeted immunotherapy may have a superior antitumor effect. Our study presents a technique to evolve novel, robust, timely therapeutic strategies and interventions for EC and other malignancies.

15.
Cell Biol Int ; 48(4): 450-460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38165230

RESUMO

Osteomyelitis is a bone destructive inflammatory disease caused by infection. Ferroptosis is closely related to multiple inflammatory diseases, but the role of ferroptosis in Staphylococcus aureus (SA)-induced osteomyelitis remains unknown. In the present study, we found that SA treatment promoted the accumulation of iron, Fe2+ , lipid peroxide, and malondialdehyde, increased TFRC and reduced FTH1 and GPX4 to trigger ferroptosis in rat bone marrow mesenchymal stem cells (BMSCs). Interestingly, increased level of N6 methyl adenosine (m6A) modification along with decreased expression level of m6A eraser FTO were observed in SA-induced BMSCs, while upregulating FTO alleviated SA-triggered ferroptosis and protected cell viability in BMSCs. Mechanistically, MDM2 was identified as a target of FTO-mediated m6A demethylation, and FTO upregulation promoted MDM2 instability to downregulated TLR4 signal and elevate the expression of SLC7A11 and GPX4 in SA-induced BMSCs. Functional recovery experiments verified that overexpressing MDM2 or TLR4 reversed the inhibiting effect of FTO upregulation on ferroptosis in SA-treated BMSCs. Additionally, FTO upregulation restrained ferroptosis and pathological damage to bone tissue in SA-induced osteomyelitis model rats. Altogether, m6A eraser FTO alleviates SA-induced ferroptosis in osteomyelitis models partly through inhibiting the MDM2-TLR4 axis.


Assuntos
Ferroptose , Células-Tronco Mesenquimais , Osteomielite , Animais , Ratos , Staphylococcus aureus , Receptor 4 Toll-Like , Osteomielite/tratamento farmacológico , Adenosina/farmacologia
16.
J Immunother Cancer ; 12(1)2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38199610

RESUMO

BACKGROUND: As an unconventional subpopulation of T lymphocytes, γδ T cells can recognize antigens independently of major histocompatibility complex restrictions. Recent studies have indicated that γδ T cells play contrasting roles in tumor microenvironments-promoting tumor progression in some cancers (eg, gallbladder and leukemia) while suppressing it in others (eg, lung and gastric). γδ T cells are mainly enriched in peripheral mucosal tissues. As the cervix is a mucosa-rich tissue, the role of γδ T cells in cervical cancer warrants further investigation. METHODS: We employed a multiomics strategy that integrated abundant data from single-cell and bulk transcriptome sequencing, whole exome sequencing, genotyping array, immunohistochemistry, and MRI. RESULTS: Heterogeneity was observed in the level of γδ T-cell infiltration in cervical cancer tissues, mainly associated with the tumor somatic mutational landscape. Definitely, γδ T cells play a beneficial role in the prognosis of patients with cervical cancer. First, γδ T cells exert direct cytotoxic effects in the tumor microenvironment of cervical cancer through the dynamic evolution of cellular states at both poles. Second, higher levels of γδ T-cell infiltration also shape the microenvironment of immune activation with cancer-suppressive properties. We found that these intricate features can be observed by MRI-based radiomics models to non-invasively assess γδ T-cell proportions in tumor tissues in patients. Importantly, patients with high infiltration levels of γδ T cells may be more amenable to immunotherapies including immune checkpoint inhibitors and autologous tumor-infiltrating lymphocyte therapies, than to chemoradiotherapy. CONCLUSIONS: γδ T cells play a beneficial role in antitumor immunity in cervical cancer. The abundance of γδ T cells in cervical cancerous tissue is associated with higher response rates to immunotherapy.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/terapia , Microambiente Tumoral , Multiômica , Imunoterapia , Prognóstico
17.
Radiat Oncol ; 19(1): 10, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254106

RESUMO

OBJECTIVES: Stereotactic body radiotherapy (SBRT) is a treatment option for patients with early-stage non-small cell lung cancer (NSCLC) who are unfit for surgery. Some patients may experience distant metastasis. This study aimed to develop and validate a radiomics model for predicting distant metastasis in patients with early-stage NSCLC treated with SBRT. METHODS: Patients at five institutions were enrolled in this study. Radiomics features were extracted based on the PET/CT images. After feature selection in the training set (from Tianjin), CT-based and PET-based radiomics signatures were built. Models based on CT and PET signatures were built and validated using external datasets (from Zhejiang, Zhengzhou, Shandong, and Shanghai). An integrated model that included CT and PET radiomic signatures was developed. The performance of the proposed model was evaluated in terms of its discrimination, calibration, and clinical utility. Multivariate logistic regression was used to calculate the probability of distant metastases. The cutoff value was obtained using the receiver operator characteristic curve (ROC), and the patients were divided into high- and low-risk groups. Kaplan-Meier analysis was used to evaluate the distant metastasis-free survival (DMFS) of different risk groups. RESULTS: In total, 228 patients were enrolled. The median follow-up time was 31.4 (2.0-111.4) months. The model based on CT radiomics signatures had an area under the curve (AUC) of 0.819 in the training set (n = 139) and 0.786 in the external dataset (n = 89). The PET radiomics model had an AUC of 0.763 for the training set and 0.804 for the external dataset. The model combining CT and PET radiomics had an AUC of 0.835 for the training set and 0.819 for the external dataset. The combined model showed a moderate calibration and a positive net benefit. When the probability of distant metastasis was greater than 0.19, the patient was considered to be at high risk. The DMFS of patients with high- and low-risk was significantly stratified (P < 0.001). CONCLUSIONS: The proposed PET/CT radiomics model can be used to predict distant metastasis in patients with early-stage NSCLC treated with SBRT and provide a reference for clinical decision-making. In this study, the model was established by combining CT and PET radiomics signatures in a moderate-quantity training cohort of early-stage NSCLC patients treated with SBRT and was successfully validated in independent cohorts. Physicians could use this easy-to-use model to assess the risk of distant metastasis after SBRT. Identifying subgroups of patients with different risk factors for distant metastasis is useful for guiding personalized treatment approaches.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radiômica , China , Fatores de Risco
18.
Sci Rep ; 14(1): 2607, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297111

RESUMO

Chronic hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC), pegylated-interferon-α(PEG-IFNα) and long-term nucleos(t)ide analogs (NUCs) are mainly drugs used to treat HBV infection, but the effectiveness is unsatisfactory in different populations, the exploration of novel therapeutic approaches is necessary. RAD51C is associated with DNA damage repair and plays an important role in the development and progression of tumors. Early cDNA microarray results showed that RAD51C expression was significantly increased in HBV-infected HCC cells, however, the relationship between HBV infection and abnormal expression of RAD51C has not been reported. Therefore, we conducted RT-PCR, western blot, Co-immunoprecipitation(Co-IP), and immunofluorescence(IF) to detect HBV-RAD51C interaction in RAD51C overexpression or interfering HCC cells. Our results showed that RAD51C and HBV X protein(HBX) produced a direct interaction in the nucleus, the HBV infection of HCC cells promoted RAD51C expression, and the increased expression of RAD51C promoted HBV replication. This indicated that RAD51C is closely related to the occurrence and development of HCC caused by HBV infection, and may bring a breakthrough in the the prevention and treatment study of HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Hepatite B/complicações , Hepatite B/genética , Expressão Gênica , Replicação Viral , Proteínas de Ligação a DNA/genética
19.
Food Funct ; 15(3): 1170-1190, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38206113

RESUMO

Helicobacter pylori (H. pylori) infection is a major cause of chronic gastritis, intestinal metaplasia, and gastric carcinoma. Antibiotics, the conventional regimen for eliminating H. pylori, cause severe bacterial resistance, gut dysbiosis and hepatic insufficiency. Here, fifty lactic acid bacteria (LAB) were initially screened out of 266 strains obtained from infants' feces and oral cavity. The antagonistic properties of these 50 strains against H. pylori were investigated. Based on eight metrics combined with principal component analysis, three LAB with probiotic function and excellent anti-H. pylori capacity were affirmed. Combining dynamics test, metabolite assays, adhesion assays, co-cultivation experiments, and SEM and TEM observations, LAB were found to antagonize H. pylori by causing coccoid conversion and intercellular adhesion. Furthermore, it was found that LAB antagonized H. pylori by four pathways, i.e., production of anti-H. pylori substances, inhibition of H. pylori colonization, enhancement of the gastric mucosal barrier, and anti-inflammatory effect. In addition, animal model experiments verified that the final screened superior strain L. salivarius NCUH062003 had anti-H. pylori activity in vivo. LAB also reduced IL-8 secretion, ultimately alleviating the inflammatory response of gastric mucosa. Whole genome sequencing (WGS) data showed that the NCUH062003 genome contained the secondary metabolite biosynthesis gene cluster T3PKS. Furthermore, NCUH062003 had a strong energy metabolism and substance transport capacity, and produced a small molecule heat stable peptide (SHSP, 4.1-6.5 kDa). Meanwhile, LAB proved to be safe through antibiotic susceptibility testing and CARD database comparisons.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Lactobacillales , Probióticos , Lactente , Animais , Humanos , Helicobacter pylori/fisiologia , Mucosa Gástrica/metabolismo , Fezes/microbiologia , Probióticos/farmacologia , Boca/patologia , Infecções por Helicobacter/microbiologia
20.
Biotechnol Appl Biochem ; 71(2): 245-255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37983718

RESUMO

Colorectal cancer (CRC) is a common and lethal cancer. ZNF687 has been disclosed to take part in diversified cancers' progression by serving as a facilitator. However, the detailed regulatory functions of ZNF687 in the CRC have not been investigated. This work is planned to probe the impacts of ZNF687 on CRC progression. The IHC, RT-qPCR, and western blot assays were used to examine mRNA and protein gene expressions. The cell proliferation measurement was accompanied by a CCK-8 assay. The Transwell assay was performed to evaluate cell invasion and migration. The angiogenesis ability was evaluated by a tube formation experiment. The m6A level was evaluated through MeRIP and m6A dot blot assays. The binding ability between ZNF687 and FTO (fat mass and obesity associated protein) was tested through an RIP assay. The ß-catenin nuclear translocation was assessed through an immunofluorescence assay. The tumor growth was evaluated through an in vivo assay. ZNF687 exhibited higher expression in CRC cells and resulted in a poor prognosis. Additionally, ZNF687 inhibition suppressed CRC cell proliferation, invasion, migration, and angiogenesis. Furthermore, the suppression of ZNF687 retarded the Wnt pathway. Through rescue assays, the reduced cell migration, proliferation, invasion, and angiogenesis mediated by ZNF687 knockdown could be reversed after BML-284 (the activator of the Wnt pathway) treatment. Finally, it was explained that ZNF687 knockdown inhibited in vivo tumor growth. This study manifested that FTO-mediated ZNF687 aggravated tumor growth, metastasis, and angiogenesis of CRC through Wnt/ß-catenin pathway. This finding may provide a hopeful molecular target for CRC treatment.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Via de Sinalização Wnt , Angiogênese , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA