Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400254, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857027

RESUMO

Lipid-lowering drugs, especially statins, are extensively utilized in clinical settings for the prevention of hyperlipidemia. Nevertheless, prolonged usage of current lipid-lowering medications is associated with significant adverse reactions. Therefore, it is imperative to develop novel therapeutic agents for lipid-lowering therapy. In this study, a chenodeoxycholic acid and lactobionic acid double-modified polyethyleneimine (PDL) nanocomposite as a gene delivery vehicle for lipid-lowering therapy by targeting the liver, are synthesized. Results from the in vitro experiments demonstrate that PDL exhibits superior transfection efficiency compared to polyethyleneimine in alpha mouse liver 12 (AML12) cells and effectively carries plasmids. Moreover, PDL can be internalized by AML12 cells and rapidly escape lysosomal entrapment. Intravenous administration of cyanine5.5 (Cy5.5)-conjugated PDL nanocomposites reveals their preferential accumulation in the liver compared to polyethyleneimine counterparts. Systemic delivery of low-density lipoprotein receptor plasmid-loaded PDL nanocomposites into mice leads to reduced levels of low-density lipoprotein cholesterol (LDL-C) and triglycerides (TC) in the bloodstream without any observed adverse effects on mouse health or well-being. Collectively, these findings suggest that low-density lipoprotein receptor plasmid-loaded PDL nanocomposites hold promise as potential therapeutics for lipid-lowering therapy.

2.
Biochem Biophys Res Commun ; 720: 150065, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749188

RESUMO

Neovascular eye diseases, including proliferative diabetic retinopathy and retinopathy of prematurity, is a major cause of blindness. Laser ablation and intravitreal anti-VEGF injection have shown their limitations in treatment of retinal neovascularization. Identification of a new therapeutic strategies is in urgent need. Our study aims to assess the effects of Cryptotanshinone (CPT), a natural compound derived from Salvia miltiorrhiza Bunge, in retina neovascularization and explore its potential mechanism. Our study demonstrated that CPT did not cause retina tissue toxicity at the tested concentrations. Intravitreal injections of CPT reduced pathological angiogenesis and promoted physical angiogenesis in oxygen-induced retinopathy (OIR) model. CPT improve visual function in OIR mice and reduced cell apoptosis. Moreover, we also revealed that CPT diminishes the expression of inflammatory cytokines in the OIR retina. In vitro, the administration of CPT effectively inhibited endothelial cells proliferation, migration, sprouting, and tube formation induced by the stimulation of human retinal vascular endothelial cells (HRVECs) with VEGF165. Mechanistically, CPT blocking the phosphorylation of VEGFR2 and downstream targeting pathway. After all, the findings demonstrated that CPT exhibits potent anti-angiogenic and anti-inflammatory effects in OIR mice, and it has therapeutic potential for the treatment of neovascular retinal diseases.


Assuntos
Injeções Intravítreas , Camundongos Endogâmicos C57BL , Fenantrenos , Neovascularização Retiniana , Animais , Fenantrenos/farmacologia , Fenantrenos/administração & dosagem , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/patologia , Neovascularização Retiniana/metabolismo , Humanos , Camundongos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia
4.
Medicine (Baltimore) ; 102(24): e34043, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327269

RESUMO

BACKGROUND: Adeno-associated virus (AAV) plays a vital role in ocular gene therapy and has been widely studied since 1996. This study summarizes and explores the publication outputs and future research trends of AAV-based ocular gene therapy. METHODS: Publications and data about AAV-based ocular gene therapy were downloaded from the Web of Science Core Collection or ClinicalTrials.gov database. The publications and data were analyzed by Microsoft Excel, CiteSpace, VOS viewer, and a free online platform (http://bibliometric.com). RESULTS: Totally 832 publications from the Web of Science Core Collection relevant to AAV-based ocular gene therapy were published from 1996 to 2022. These publications were contributed by research institutes from 42 countries or regions. The US contributed the most publications among these countries or regions, notably the University of Florida. Hauswirth WW was the most productive author. "Efficacy" and "safety" are the main focus areas for future research according to the references and keywords analysis. Eighty clinical trials examined AAV-based ocular gene therapy were registered on ClinicalTrials.Gov. Institutes from the US and European did the dominant number or the large proportion of the trials. CONCLUSIONS: The research focus of the AAV-based ocular gene therapy has transitioned from the study in biological theory to clinical trialing. The AAV-based gene therapy is not limited to inherited retinal diseases but various ocular diseases.


Assuntos
Dependovirus , Face , Humanos , Dependovirus/genética , Retina , Bibliometria , Terapia Genética
5.
Life Sci ; 315: 121387, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640904

RESUMO

AIMS: Exosomes are a subpopulation of extracellular vesicles (EV) derived from multivesicular body (MVB) that transmit various cellular molecular constituents, including long noncoding RNAs (lncRNAs), to promote intercellular communication. Our aim was to investigate the function and mechanism of exosomal LINC00355 in gastric cancer cells. MAIN METHODS: Exosomal levels of LINC00355 in GC patients and healthy controls were measured by RT-qPCR. The effects of exosomal LINC00355 on GC cell viability, proliferation, migration and invasion were evaluated by CCK8, colony formation, Transwell and wound healing assays. The expression levels of Ki67 in xenograft tumor tissues were confirmed by immunohistochemistry assay, and apoptosis was analyzed by TUNEL apoptosis assay. Western blotting was used to monitor protein expression. RNA immunoprecipitation and RNA pulldown were performed to detect the interaction between LINC00355 and HDAC3. Chromatin immunoprecipitation was used to assess the interaction of HDAC3 with the TP53INP1 promoter. KEY FINDINGS: Exosomal LINC00355 levels were higher in plasma from gastric cancer patients than in plasma from healthy volunteers. Exosomal LINC00355 promoted the proliferation, migration and invasion of gastric cancer cell lines. RNA sequence analysis demonstrated that LINC00355 knockdown downregulated histone deacetylase HDAC3 and upregulated TP53INP1. Mechanistic investigation indicated that exosomal LINC00355 interacted with HDAC3 to suppress TP53INP1 transcription, which promoted epithelial-mesenchymal transition (EMT). SIGNIFICANCE: Exosomal LINC00355 plays a pivotal role in regulating EMT to induce the malignant progression of GC. Exosomal LINC00355 could be a promising biomarker in the early diagnosis and prognosis of GC.


Assuntos
Exossomos , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , MicroRNAs/genética , RNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia
6.
ACS Nano ; 16(3): 4175-4185, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35167250

RESUMO

Sperm motility can be enhanced by adding ATP exogenously during in vitro fertilization. However, administering exogenous ATP to the testis to improve sperm motility for in vivo asthenozoospermia treatment has not been investigated yet. Inspired by the recent advances in nanomedicine, we investigated whether the capability of drug delivery nanocarriers to traverse the blood-testis barrier (BTB) can facilitate ATP-dependent asthenozoospermia treatment. We found that the human H-ferritin (HFn) nanocarrier possesses the capability to traverse the BTB and specifically targets the head of elongated sperm cells. Specifically, the HFn nanocarrier traversed the BTB and accumulated in the sperm heads by binding with the HFn receptor (HFR), whose expression was relatively low in Sertoli cells but high in sperm heads. In a gossypol-induced mouse asthenozoospermia model, the administration of an ATP-loaded HFn nanocage through a tail vein injection significantly improved sperm motility. Moreover, the HFn nanocarrier was not toxic to mice in the short (1d) and long terms (30d, 90d) nor did it affect their reproductive health. Thus, the ATP-loaded HFn nanocarrier can potentially serve as a drug-delivery system for treating asthenozoospermia.


Assuntos
Astenozoospermia , Trifosfato de Adenosina/metabolismo , Animais , Apoferritinas/metabolismo , Astenozoospermia/tratamento farmacológico , Astenozoospermia/metabolismo , Barreira Hematotesticular/metabolismo , Ferritinas/metabolismo , Humanos , Masculino , Camundongos , Motilidade dos Espermatozoides , Espermatozoides/metabolismo
7.
Ecotoxicol Environ Saf ; 231: 113184, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35032726

RESUMO

Ferrous iron and polysulfide (Fe(II)Sn aq) is a nano-decoction. It is usually prepared from the suspension of iron sulfide nanomaterial, using autoclave and centrifugation. A previous study conducted in our laboratory revealed that Fe(II)Sn aq was highly antibacterial, and it could efficiently kill more than 90% population of Escherichia coli and Staphylococcus aureus, within 5 min of the treatment. Our study reported that the intravenous administration of Fe(II)Sn aq provided effective treatment against epididymis infection, caused by S. aureus. The results of the study further highlighted its potential for clinical application. However, its effects on the reproductive system and overall health of mammals have not been investigated earlier. The present study assessed the impacts of Fe(II)Sn aq on reproductive health and other aspects of male mice. Briefly, male mice were exposed to Fe(II)Sn aq, either intravenously at the dose of 0.7 mM, 1.4 mM, and 2.8 mM of Fe2+or orally at the dose of 1.4 mM, 2.8 mM, and 5.6 mM of Fe2+. Following this, body weight, organs index, quality of sperm, blood biochemical markers, histopathology of organs, oxidative stress and apoptosis were evaluated, after 1 day and 30 days of exposure. In addition, male reproductivity was evaluated in terms of mating with female mice, and the body weight of the resulting offspring was recorded. Our results showed that the mice processed with Fe(II)Sn aq exhibited normal physiological status and reproductive capability. The present study illustrated the short- and long-term influences of Fe(II)Sn aq on the fertility of male mice for the first time. The findings of the study provided a valuable reference for the application of Fe(II)Sn aq, particularly in terms of reproductive safety.


Assuntos
Epididimite , Ferro , Animais , Antibacterianos/toxicidade , Feminino , Masculino , Camundongos , Saúde Reprodutiva , Staphylococcus aureus , Sulfetos
8.
J Biomed Res ; 37(3): 179-193, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37013864

RESUMO

Erythropoietin-producing hepatocellular carcinoma A3 (EphA3) is a member of the largest subfamily of tyrosine kinase receptors-Eph receptors. Previous studies have shown that EphA3 is associated with tissue development. Recently, we have found that the expression of EphA3 is elevated in the hypothalamus of mice with diet-induced obesity (DIO). However, the role of EphA3 in hypothalamic-controlled energy metabolism remains unclear. In the current study, we demonstrated that the deletion of EphA3 in the hypothalamus by CRISPR/Cas9-mediated gene editing promotes obesity in male mice with high-fat diet feeding rather than those with normal chow diet feeding. Moreover, the deletion of hypothalamic EphA3 promotes high-fat DIO by increasing food intake and reducing energy expenditure. Knockdown of EphA3 leads to smaller intracellular vesicles in GT1-7 cells. The current study reveals that hypothalamic EphA3 plays important roles in promoting DIO.

9.
Cell Rep ; 37(3): 109868, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686338

RESUMO

Store-operated calcium entry (SOCE) is pivotal in maintaining intracellular Ca2+ level and cell function; however, its role in obesity development remains largely unknown. Here, we show that the stromal interaction molecule 1 (Stim1), an endoplasmic reticulum (ER) Ca2+ sensor for SOCE, is critically involved in obesity development. Pharmacological blockade of SOCE in the brain, or disruption of Stim1 in hypothalamic agouti-related peptide (AgRP)-producing neurons (ASKO), significantly ameliorates dietary obesity and its associated metabolic disorders. Conversely, constitutive activation of Stim1 in AgRP neurons leads to an obesity-like phenotype. We show that the blockade of SOCE suppresses general translation in neuronal cells via the 2',5'-oligoadenylate synthetase 3 (Oas3)-RNase L signaling. While Oas3 overexpression in AgRP neurons protects mice against dietary obesity, deactivation of RNase L in these neurons significantly abolishes the effect of ASKO. These findings highlight an important role of Stim1 and SOCE in the development of obesity.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/prevenção & controle , Molécula 1 de Interação Estromal/deficiência , 2',5'-Oligoadenilato Sintetase/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Linhagem Celular Tumoral , Dieta Hiperlipídica , Modelos Animais de Doenças , Endorribonucleases/metabolismo , Células HEK293 , Humanos , Hipotálamo/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Molécula 1 de Interação Estromal/genética , Aumento de Peso
10.
In Vitro Cell Dev Biol Anim ; 57(4): 438-447, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33772408

RESUMO

Gonadotropin-releasing hormone (GnRH) is the initial central regulator of the animal reproduction system, which is crucial for puberty onset and fertility. However, the mechanisms regulating GnRH production and release remain unclear. In addition, few studies reported that miR-375 expressed in mouse hypothalamus, but up to now there are limited functional studies of miR-375 in regulating GnRH secretion. According to our recent findings that miR-375 was involved in regulating the synthesis and secretion of pituitary hormones, thus, we aimed to identify the role of miR-375 in regulating GnRH production in GT1-7 cells. Immunofluorescence results demonstrated that miR-375 was expressed in all of the GT1-7 cells. The functional studies showed that miR-375 overexpression enhanced GnRH mRNA expression level, but decreased the mRNA expressions of Sp1, Cebpb, Msx1, and Tle4. Transcriptomics analysis demonstrated Sp1 and Tle4 acted as the targeting genes of miR-375, and Sp1 negatively regulated Gnrh mRNA expression by binding to the Gnrh promoter. Thus, we conclude that miR-375 potentially enhances GnRH expression by targeting Sp1 and Tle4 in GT1-7 cells. Our results highlight a critical role of miR-375 in regulating GnRH production, which may provide a novel potential therapeutic approach to neuroendocrine-disorder-related dysfunctions.


Assuntos
Hormônio Liberador de Gonadotropina/genética , MicroRNAs/genética , Proteínas Quinases/genética , Reprodução/genética , Animais , Linhagem Celular , Regulação da Expressão Gênica/genética , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética
11.
Cell Death Discov ; 6(1): 99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083020

RESUMO

Long noncoding RNAs (LncRNAs) have been reported to play critical roles in gastric cancer, but true biomarkers remain unknown. In this study, we found a new lncRNA LINC00355 that was involved in malignant progression of gastric cancer (GC) and further revealed its role and mechanism. Differentially expressed lncRNAs were identified through bioinformatics, and qRT-PCR was used to validate the expression of LINC00355 in gastric cancer tissues and cells. The biological role of LINC00355 in GC was detected by gene overexpression and knockdown experiments. Subcellular fractionation, qRT-PCR, and FISH were performed to detect the subcellular localization. Co-IP and western blotting were used to study the ubiquitination-mediated regulation of P53 and the expression of the E3 ligases RAD18 and UBE3C. The results showed that LINC00355 was significantly increased in gastric cancer cell lines and patient tissues and closely correlated with late stages, distant metastasis, and poor prognosis of patients. High expression of LINC00355 promoted the proliferation and invasion of gastric cancer cells in vivo and in vitro. Mechanistic studies found that LINC00355 that mainly located in the nucleus, acting as a transcriptional activator, promoted transcription of RAD18 and UBE3C, which both bind to P53 and mediate the ubiquitination and degradation of P53. Furthermore, LINC00355 overexpression enhanced the ubiquitination process, and LINC00355 knockdown alleviated it. These results indicated that LINC00355 induces gastric cancer cell proliferation and invasion by promoting transcription of RAD18 and UBE3C, which mediates ubiquitination of P53 and thereby plays a critical role in survival and tumorigenicity of gastric cancer cells. LINC00355 may represent a new mechanism for GC progression and provide a potential marker for GC diagnosis and treatment.

12.
J Invest Dermatol ; 139(1): 224-234, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30081003

RESUMO

TWEAK acts by engaging with Fn14 to regulate inflammatory responses, fibrosis, and tissue remodeling, which are central in the repair processes of wounds. This study aims to explore the potential role of the TWEAK/Fn14 pathway in the healing of cutaneous burn wounds. Third-degree burns were introduced in wild-type and Fn14-deficient BALB/c mice, followed by evaluation of wound areas and histological changes. The downstream cytokines including growth factors were also examined in lesional skin. Moreover, human dermal microvascular endothelial cells and dermal fibroblasts were analyzed in vitro upon TWEAK stimulation. The healing of burn wounds was delayed in Fn14-deficient mice and was accompanied by the suppression of inflammatory responses, growth factor production, and extracellular matrix synthesis. Moreover, TWEAK/Fn14 activation enhanced the migration and cytokine production of both dermal microvascular endothelial cells and dermal fibroblasts. TWEAK also facilitates the expression of α-SMA and palladin in dermal fibroblasts. Furthermore, transfection of Fn14 small interfering RNA abrogated such promotion effect of TWEAK on these cells. In conclusion, TWEAK/Fn14 signals mediate the healing of burn wounds, possibly involving TWEAK regulation of the function of resident cells.


Assuntos
Queimaduras/genética , Regulação da Expressão Gênica , RNA/genética , Pele/patologia , Receptor de TWEAK/genética , Cicatrização/genética , Animais , Queimaduras/metabolismo , Queimaduras/patologia , Células Cultivadas , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Camundongos Knockout , Reação em Cadeia da Polimerase , Transdução de Sinais , Pele/metabolismo , Receptor de TWEAK/biossíntese
13.
Endocrinology ; 159(1): 465-476, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155986

RESUMO

An adverse intrauterine environment may induce adult disease in offspring, but the mechanisms are not well understood. It is reported that fresh embryo transfer (ET) in assisted reproductive technology leads to high maternal estradiol (E2), and prenatal high E2 exposure increases the risk of organ disorders in later life. We found that male newborns and children of fresh ET showed elevated fasting insulin and homeostasis model of assessment for insulin resistance index (HOMA-IR) scores. Male mice with high prenatal estradiol exposure (HE) grew heavier than control mice and developed insulin resistance; they also showed increased food intake, with increased orexigenic hypothalamic neuropeptide Y (NPY) expression. The hypothalamic insulin receptor (INSR) was decreased in male HE mice, associated with elevated promoter methylation. Chronic food restriction (FR) in HE mice reversed insulin resistance and rescued hypothalamic INSR expression by correcting the elevated Insr promoter methylation. Our findings suggest that prenatal exposure to high E2 may induce sex-specific metabolic disorders in later life through epigenetic programming of hypothalamic Insr promoter, and dietary intervention may reverse insulin resistance by remodeling its methylation pattern.


Assuntos
Estradiol/efeitos adversos , Fármacos para a Fertilidade Feminina/efeitos adversos , Hiperinsulinismo/induzido quimicamente , Hipotálamo/efeitos dos fármacos , Resistência à Insulina , Neurônios/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Animais , Criança , Pré-Escolar , Transferência Embrionária/efeitos adversos , Ingestão de Energia/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Recém-Nascido , Masculino , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeo Y/agonistas , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Gravidez , Distribuição Aleatória , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Aumento de Peso/efeitos dos fármacos
14.
Nature ; 497(7448): 211-6, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23636330

RESUMO

Ageing is a result of gradual and overall functional deteriorations across the body; however, it is unknown whether an individual tissue primarily works to mediate the ageing progress and control lifespan. Here we show that the hypothalamus is important for the development of whole-body ageing in mice, and that the underlying basis involves hypothalamic immunity mediated by IκB kinase-ß (IKK-ß), nuclear factor κB (NF-κB) and related microglia-neuron immune crosstalk. Several interventional models were developed showing that ageing retardation and lifespan extension are achieved in mice by preventing ageing-related hypothalamic or brain IKK-ß and NF-κB activation. Mechanistic studies further revealed that IKK-ß and NF-κB inhibit gonadotropin-releasing hormone (GnRH) to mediate ageing-related hypothalamic GnRH decline, and GnRH treatment amends ageing-impaired neurogenesis and decelerates ageing. In conclusion, the hypothalamus has a programmatic role in ageing development via immune-neuroendocrine integration, and immune inhibition or GnRH restoration in the hypothalamus/brain represent two potential strategies for optimizing lifespan and combating ageing-related health problems.


Assuntos
Envelhecimento/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/fisiologia , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Cognição/efeitos dos fármacos , Feminino , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Hormônio Liberador de Gonadotropina/farmacologia , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/enzimologia , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Longevidade/efeitos dos fármacos , Longevidade/genética , Longevidade/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/enzimologia , Microglia/fisiologia , Neurogênese , Reprodução/fisiologia
15.
Stem Cells Dev ; 19(2): 259-68, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19594362

RESUMO

Cell transplantation-based therapy could be an effective way for the treatment of many diseases. Among numerous somatic stem cells isolated and purified, skin-derived precursors (SKPs) are abundant autologous cells, providing a large reservoir of cells for therapeutic transplantation. Previous studies showed that SKPs could be differentiated into neural and mesodermal progeny in vitro. In the present study, we attempted to differentiate SKPs to muscle progenitors in vitro. After treatment with a combination of growth factors, SKPs were differentiated into cells expressing markers of muscle progenitors, including Pax7. Furthermore, some of these cells expressed desmin, TnT, Mstn, and Myog, suggesting their differentiation into the muscular lineage. After single point injection, the differentiation of SKPs from green fluorescent protein positive donors into muscle precursors was also demonstrated in vivo. Additionally, donor SKPs migrated to the niche of muscle progenitors, participated in the regeneration of recipient muscles, and expressed markers of muscle progenitors, including Pax7, M-cadherin, and MyoD. After recovery of donor cells from recipient muscles at 3 weeks postinjection, some of the injected SKPs were converted to myogenic precursors, based on the expression of specific markers (Pax7 and MyoD). Some of these donor cells also expressed muscle makers (desmin, TnT, and Myog). At 20 weeks postinjection, the injected SKPs were localized to recipient muscles without decreases in their population size. In summary, these findings indicated that SKPs could develop into muscle progenitors and differentiated muscle cells in vitro and in vivo, thus providing valuable autologous cells for the treatment of muscle diseases.


Assuntos
Células-Tronco Embrionárias/citologia , Fibras Musculares Esqueléticas/citologia , Pele/citologia , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Desmina/genética , Desmina/metabolismo , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Fator de Transcrição PAX3 , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante de Células-Tronco , Células-Tronco/metabolismo
16.
Biochem Biophys Res Commun ; 368(3): 483-8, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18242164

RESUMO

Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/beta-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active beta-catenin, two key members of the Wnt/beta-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/beta-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis.


Assuntos
Células Epidérmicas , Epiderme/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Epiderme/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Proteína Wnt3 , Proteína Wnt3A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA