Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Undersea Hyperb Med ; 45(3): 351-362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30028921

RESUMO

Nuclear factor kappa B (NF-κB) is the critical transcriptional factor in the pathogenesis of acute lung injury (ALI). NF-κB regulates the expression changes of inflammatory factors such as tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß) and interleukin 6 (IL-6). In a previous study we showed that decompression sickness (DCS) caused by simulated unsafe fast buoyancy ascent escape (FBAE) could result in ALI, which was characterized by expression changes of inflammatory factors in rat lung tissue. The purpose of the present work was to study the roles of NF-κB and TNF-α in the process of DCS-induced rat lung injury caused by simulated unsafe FBAE. The research methods aimed to detect the rat lung tissue messenger ribonucleic acid (mRNA) and protein level variations of NF-κB, inhibitory ×B (I×B), TNF-α, IL-1ß, IL-6, IL-10 and IL-13 by using pretreatment of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) and TNF-α antibody (Ab). Our experimental results demonstrated that PDTC could improve the survival rate of the rats with DCS caused by unsafe FBAE more effectively than TNF-α Ab. However, the inhibition of TNF-α Ab on the nuclear translocated protein expression of NF-κB was more effective than PDTC. Both PDTC and TNF-α Ab can abrogate the increment of the rat lung tissue mRNA levels of TNF-α, IL-1ß, IL-6 and protein levels of NF-κB, TNF-α, IL-1ß effectively and increase the rat lung tissue content of I×B significantly. In conclusion, TNF-α-mediated NF-κB signaling may be one of the critical signaling pathways in the pathogenesis of DCS-induced rat lung injury caused by simulated unsafe FBAE. PDTC may ameliorate this type of injury partly through inhibiting the NF-κB pathway.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Antioxidantes/farmacologia , Doença da Descompressão/complicações , Interleucinas/metabolismo , NF-kappa B/metabolismo , Pirrolidinas/farmacologia , Tiocarbamatos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Interleucina-10/metabolismo , Interleucina-13/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , NF-kappa B/antagonistas & inibidores , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Taxa de Sobrevida , Fator de Necrose Tumoral alfa/antagonistas & inibidores
2.
Undersea Hyperb Med ; 42(1): 15-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26094300

RESUMO

Fast buoyancy ascent escape is one of the major naval submarine escape maneuvers. Decompression sickness (DCS) is the major bottleneck to increase the depth of fast buoyancy ascent escape. Rapid decompression induces the release of inflammatory mediators and results in tissue inflammation cascades and a protective anti-inflammatory response. In our previous study, we found that DCS caused by simulated fast buoyancy ascent escape could induce acute lung injury (ALI) and the expression changes of the proinflammatory cytokines: tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß and IL-6 in rat lung tissue. In order to study the expression change characteristics of TNF-α, IL-1ß, IL-6, IL-10 and IL-13 in the rat lung of DCS caused by simulated fast buoyancy ascent escape, we detected the rat lung mRNA and protein levels of TNF-α, IL-1ß, IL-6, IL-10 and IL-13 at 0.5 hour after DCS caused by simulated fast buoyancy ascent escape (fast escape group), compared with the normal control group (control group) and diving DCS (decompression group). We observed that DCS caused by simulated fast buoyancy ascent escape could increase the mRNA levels of TNF-α, IL-1ß, IL-6, IL-10, and the protein levels of TNF-α, IL-10 in rat lung tissue. At the same time, we found that the protein level of IL-13 was also downregulated in rat lung tissue. TNF-α, IL-10 and IL-13 may be involved in the process of the rat lung injury of DCS caused by simulated fast buoyancy ascent escape. In conclusion, the expression changes of inflammatory factors in the rat lung of DCS caused by simulated fast buoyancy ascent escape were probably different from that in the rat lung of diving DCS, which indicated that the pathological mechanism of DCS caused by simulated fast buoyancy ascent escape might be different from that of diving DCS.


Assuntos
Doença da Descompressão/metabolismo , Interleucinas/metabolismo , Pulmão/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Doença da Descompressão/etiologia , Doença da Descompressão/mortalidade , Doença da Descompressão/patologia , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucinas/genética , Pulmão/patologia , Masculino , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Medicina Submarina , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética
3.
Undersea Hyperb Med ; 42(1): 23-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26094301

RESUMO

Fast buoyancy ascent escape is the general submarine escape manner adopted by the majority of naval forces all over the world. However, if hyperbaric exposure time exceeds the time limit, fast buoyancy ascent escape has a high risk to result in decompression sickness (DCS). Tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and IL-6 have been all implicated in the process of inflammation associated with acute lung injury (ALI). Our work demonstrated that DCS caused by simulated fast buoyancy ascent escape could induce ALß in the rat model. The purpose of the present work was to study the expression changes of TNF-α, IL-1ß and IL-6 in the rat lung affected by DCS caused by simulated fast buoyancy ascent escape. The lung tissue mRNA levels of TNF-α, Il-1ß and Il-6 were significantly increased at 0.5 hour after DCS caused by simulated fast buoyancy ascent escape. The lung contents of TNF-α, IL-1ß and IL-6 were at an expression peak at 0.5 hour, although showing no statistical difference when compared with the normal control group. In conclusion, the rat lung expression variations of TNF-α, IL-1ß and IL-6 are the most obvious at 0.5 hour within 24 hours after the lung injury by DCS caused by simulated fast buoyancy ascent escape.


Assuntos
Doença da Descompressão/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Doença da Descompressão/patologia , Interleucina-1beta/genética , Interleucina-6/genética , Pulmão/patologia , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Medicina Submarina , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética
4.
Cell Res ; 25(3): 318-34, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25633594

RESUMO

Na⁺, K⁺-ATPase (NKA) is required to generate the resting membrane potential in neurons. Nociceptive afferent neurons express not only the α and ß subunits of NKA but also the γ subunit FXYD2. However, the neural function of FXYD2 is unknown. The present study shows that FXYD2 in nociceptive neurons is necessary for maintaining the mechanical allodynia induced by peripheral inflammation. FXYD2 interacted with α1NKA and negatively regulated the NKA activity, depolarizing the membrane potential of nociceptive neurons. Mechanical allodynia initiated in FXYD2-deficient mice was abolished 4 days after inflammation, whereas it persisted for at least 3 weeks in wild-type mice. Importantly, the FXYD2/α1NKA interaction gradually increased after inflammation and peaked on day 4 post inflammation, resulting in reduction of NKA activity, depolarization of neuron membrane and facilitation of excitatory afferent neurotransmission. Thus, the increased FXYD2 activity may be a fundamental mechanism underlying the persistent hypersensitivity to pain induced by inflammation.


Assuntos
Hiperalgesia/fisiopatologia , Inflamação/fisiopatologia , Nociceptores/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Nociceptores/metabolismo , Dor/fisiopatologia , RNA Mensageiro/genética , ATPase Trocadora de Sódio-Potássio/genética , Transmissão Sináptica/fisiologia
5.
Magn Reson Imaging ; 33(3): 270-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25461305

RESUMO

PURPOSE: The study was aimed to determine and optimize the parameters for the MR fast imaging employing steady-state acquisition (FIESTA) sequence, which was to obtain an acceptable image to evaluate the value of the movement of the temporomandibular joint (TMJ). METHODS: In this investigation, 20 volunteers were examined to determine and optimize the parameters of the FIESTA sequence. Then, 160 TMJs from 80 patients with temporomandibular joint disorders (TMD) of clinical suspicion were consecutively performed by both static MRI and dynamic FIESTA MRI on the oblique sagittal position. The FIESTA MR images of TMJs were obtained from a slow, consecutive, free and open-closed movement. Based on the cycles of TMJ movements during the process of FIESTA MRI (90seconds), we classified all TMJs into 2 groups: cycles of open-closed mouths less than or equal to 3 (group 1) and more than 3 (group 2). Each image was marked level 1-3 by its quality. Meanwhile, the location of articular disc, mandibular condyle, motive artifact, "jumping sign" and the joint effusion in each TMJ were assessed respectively. RESULTS: By dynamic FIESTA MRI among 160 TMJs, 92 TMJs (57.50%) were in group 1, and 68 TMJs were (42.50%) in group 2. There were statistically significant differences between group 1 and group 2(p<0.05). It was shown that the number of "level 3" in group 1 was greater than group 2, and the number of "level 1" in group 1 was less than group 2. The phenomenon of motion artifact and "jumping sign" were much significantly higher in group 2 than those in group 1 (p<0.01). Furthermore, in all of the "jumping sign" cases, the phenomenon of "jumping sign" was significantly higher in group ADDwR than in group ADDw/oR (p<0.01). There was a statistically significant correlation between disc-condyle complex in "jumping sign" phenomenon and group ADDwR (r=0.621, p<0.05). The data with the false matching rate of 31.52% showed that the maximum motion range on the dynamic imaging was greater than the static imaging. Among 160 TMJs, joint effusions of 37 TMJs (23.13%) were identified by dynamic FIESTA-MRI. Among 79 TMJs with ADDw/oR(anterior disc displacement without reduction), 42 sides were operated with Maxillofacial arthroscopy surgery. The surgical result was in agreement with the MR result. CONCLUSION: Most TMJs images with a slow free open-close movement (cycles≦3) could be successfully obtained by the dynamic FIESTA MRI. The FIESTA MRI might be considered as an additional method to evaluate the movement of the articular disk and the mandibular condyle.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Transtornos da Articulação Temporomandibular/patologia , Articulação Temporomandibular/patologia , Adulto , Feminino , Humanos , Masculino , Mandíbula/patologia , Côndilo Mandibular/patologia , Transtornos da Articulação Temporomandibular/diagnóstico , Adulto Jovem
6.
Undersea Hyperb Med ; 40(4): 313-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23957201

RESUMO

Prolonged exposure to hyperbaric oxygen can cause pulmonary and nerve system toxicity. Although hyperbaric oxygen treatment has been used for a broad spectrum of ailments, the mechanisms of prolonged hyperbaric oxygen-induced lung injury are not fully understood. The purpose of the present work was to investigate the roles of ERK, p38, and caspase-3 in rat lung tissue exposed to hyperbaric oxygen at 2.3 atmospheres absolute (atm abs) for two, six and 10 hours. The results showed that the ERK and p38 were phosphorylated at two hours and reached a peak at six hours into exposure to hyperbaric oxygen. While the phosphorylation level of ERK decreased, p38 remained at a high level of activation at 10 hours. The activation of ERK and p38 was down-regulated when rats were exposed to normoxic hyperbaric nitrogen for 10 hours. However, caspase-3 was activated at six hours and 10 hours into exposure to hyperbaric oxygen. These results demonstrated different changes of activation of ERK and p38 during lung injury induced by prolonged exposure to hyperbaric oxygen. The time course changes of activated caspase-3 were similar to the process of p38 activation upon exposure to hyperbaric oxygen. In this way, activation of p38, not ERK, seems to be a mechanism associated with prolonged hyperbaric oxygen-induced lung injury.


Assuntos
Caspase 3/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Oxigenoterapia Hiperbárica/efeitos adversos , Lesão Pulmonar/enzimologia , Oxigênio/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Análise de Variância , Animais , Apoptose , Ativação Enzimática , Pulmão/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Masculino , Nitrogênio , Fosforilação , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
7.
Brain ; 135(Pt 2): 391-403, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22275428

RESUMO

Emerging evidence suggests that the suppressive modulators released from nociceptive afferent neurons contribute to pain regulation. However, the suppressive modulators expressed in small-diameter neurons of the dorsal root ganglion remain to be further identified. The present study shows that the activin C expressed in small dorsal root ganglion neurons is required for suppressing inflammation-induced nociceptive responses. The expression of activin C in small dorsal root ganglion neurons of rats was markedly downregulated during the early days of peripheral inflammation induced by intraplantar injection of the complete Freund's adjuvant. Intrathecal treatment with the small interfering RNA targeting activin ßC or the antibodies against activin C could enhance the formalin-induced nociceptive responses, and impair the recovery from the complete Freund's adjuvant-induced thermal hyperalgesia. Intrathecally applied activin C could reduce nociceptive responses induced by formalin or complete Freund's adjuvant. Moreover, activin C was found to inhibit the inflammation-induced phosphorylation of extracellular signal-regulated kinase in the dorsal root ganglia and the dorsal spinal cord. Thus, activin C functions as an endogenous suppressor of inflammatory nociceptive transmission and may have a therapeutic potential for treatment of inflammatory pain.


Assuntos
Ativinas/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Inflamação/metabolismo , Subunidades beta de Inibinas/metabolismo , Nociceptores/metabolismo , Animais , Comportamento Animal , Contagem de Células , Dor Crônica/induzido quimicamente , Dor Crônica/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hiperalgesia/induzido quimicamente , Inflamação/induzido quimicamente , Fosforilação , Ratos , Ratos Sprague-Dawley
8.
Neuron ; 69(5): 974-87, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21382556

RESUMO

Excitatory synaptic transmission is modulated by inhibitory neurotransmitters and neuromodulators. We found that the synaptic transmission of somatic sensory afferents can be rapidly regulated by a presynaptically secreted protein, follistatin-like 1 (FSTL1), which serves as a direct activator of Na(+),K(+)-ATPase (NKA). The FSTL1 protein is highly expressed in small-diameter neurons of the dorsal root ganglion (DRG). It is transported to axon terminals via small translucent vesicles and secreted in both spontaneous and depolarization-induced manners. Biochemical assays showed that FSTL1 binds to the α1 subunit of NKA and elevates NKA activity. Extracellular FSTL1 induced membrane hyperpolarization in cultured cells and inhibited afferent synaptic transmission in spinal cord slices by activating NKA. Genetic deletion of FSTL1 in small DRG neurons of mice resulted in enhanced afferent synaptic transmission and sensory hypersensitivity, which could be reduced by intrathecally applied FSTL1 protein. Thus, FSTL1-dependent activation of NKA regulates the threshold of somatic sensation.


Assuntos
Proteínas Relacionadas à Folistatina/metabolismo , Células Receptoras Sensoriais/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Transmissão Sináptica/fisiologia , Análise de Variância , Animais , Northern Blotting , Western Blotting , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas Relacionadas à Folistatina/genética , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/metabolismo , Ratos
9.
Mol Pain ; 6: 92, 2010 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-21143988

RESUMO

BACKGROUND: It has been shown that estrogen is synthesized in the spinal dorsal horn and plays a role in modulating pain transmission. One of the estrogen receptor (ER) subtypes, estrogen receptor alpha (ERα), is expressed in the spinal laminae I-V, including substantia gelatinosa (SG, lamina II). However, it is unclear how ERs are involved in the modulation of nociceptive transmission. RESULTS: In the present study, a selective ERα antagonist, methyl-piperidino-pyrazole (MPP), was used to test the potential functional roles of spinal ERα in the nociceptive transmission. Using the whole-cell patch-clamp technique, we examined the effects of MPP on SG neurons in the dorsal root-attached spinal cord slice prepared from adult rats. We found that MPP increased glutamatergic excitatory postsynaptic currents (EPSCs) evoked by the stimulation of either Aδ- or C-afferent fibers. Further studies showed that MPP treatment dose-dependently increased spontaneous EPSCs frequency in SG neurons, while not affecting the amplitude. In addition, the PKC was involved in the MPP-induced enhancement of synaptic transmission. CONCLUSIONS: These results suggest that the selective ERα antagonist MPP pre-synaptically facilitates the excitatory synaptic transmission to SG neurons. The nociceptive transmission evoked by Aδ- and C-fiber stimulation could be potentiated by blocking ERα in the spinal neurons. Thus, the spinal estrogen may negatively regulate the nociceptive transmission through the activation of ERα.


Assuntos
Receptor alfa de Estrogênio/antagonistas & inibidores , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Nociceptores/fisiologia , Substância Gelatinosa/citologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Fibras Nervosas Mielinizadas , Fibras Nervosas Amielínicas , Nociceptores/efeitos dos fármacos , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Medula Espinal/fisiologia , Transmissão Sináptica/efeitos dos fármacos
10.
J Neurosci ; 30(32): 10927-38, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20702721

RESUMO

B-type natriuretic peptide (BNP) has been known to be secreted from cardiac myocytes and activate its receptor, natriuretic peptide receptor-A (NPR-A), to reduce ventricular fibrosis. However, the function of BNP/NPR-A pathway in the somatic sensory system has been unknown. In the present study, we report a novel function of BNP in pain modulation. Using microarray and immunoblot analyses, we found that BNP and NPR-A were expressed in the dorsal root ganglion (DRG) of rats and upregulated after intraplantar injection of complete Freund's adjuvant (CFA). Immunohistochemistry showed that BNP was expressed in calcitonin gene-related peptide (CGRP)-containing small neurons and IB4 (isolectin B4)-positive neurons, whereas NPR-A was present in CGRP-containing neurons. Application of BNP reduced the firing frequency of small DRG neurons in the presence of glutamate through opening large-conductance Ca2+-activated K+ channels (BKCa channels). Furthermore, intrathecal injection of BNP yielded inhibitory effects on formalin-induced flinching behavior and CFA-induced thermal hyperalgesia in rats. Blockade of BNP signaling by BNP antibodies or cGMP-dependent protein kinase (PKG) inhibitor KT5823 [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester] impaired the recovery from CFA-induced thermal hyperalgesia. Thus, BNP negatively regulates nociceptive transmission through presynaptic receptor NPR-A, and activation of the BNP/NPR-A/PKG/BKCa channel pathway in nociceptive afferent neurons could be a potential strategy for inflammatory pain therapy.


Assuntos
Regulação da Expressão Gênica/fisiologia , Peptídeo Natriurético Encefálico/metabolismo , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Método Duplo-Cego , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Adjuvante de Freund , Gânglios Espinais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/complicações , Lectinas/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Peptídeo Natriurético Encefálico/imunologia , Dor/tratamento farmacológico , Dor/etiologia , Medição da Dor/métodos , Técnicas de Patch-Clamp/métodos , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores do Fator Natriurético Atrial/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
11.
Proc Natl Acad Sci U S A ; 107(29): 13117-22, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20615975

RESUMO

Morphine-induced analgesia and antinociceptive tolerance are known to be modulated by interaction between delta-opioid receptors (DORs) and mu-opioid receptors (MORs) in the pain pathway. However, evidence for expression of DORs in nociceptive small-diameter neurons in dorsal root ganglia (DRG) and for coexistence of DORs with MORs and neuropeptides has recently been challenged. We now report, using in situ hybridization, single-cell PCR, and immunostaining, that DORs are widely expressed not only in large DRG neurons but in small ones and coexist with MORs in peptidergic small DRG neurons, with protachykinin-dependent localization in large dense-core vesicles. Importantly, both DOR and MOR agonists reduce depolarization-induced Ca(2+) currents in single small DRG neurons and inhibit afferent C-fiber synaptic transmission in the dorsal spinal cord. Thus, coexistence of DORs and MORs in small DRG neurons is a basis for direct interaction of opioid receptors in modulation of nociceptive afferent transmission and opioid analgesia.


Assuntos
Nociceptores/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Animais , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Nociceptores/citologia , Nociceptores/efeitos dos fármacos , Peptídeos/metabolismo , Precursores de Proteínas/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos , Receptores Opioides delta/genética , Receptores Opioides mu/genética , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Taquicininas/farmacologia
12.
Shanghai Kou Qiang Yi Xue ; 15(1): 11-4, 2006 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-16525600

RESUMO

PURPOSE: To investigate the diagnostic value of 16 slices spiral CT in maxillary sinus diseases. METHODS: 16 slices spiral CT findings of 58 cases with maxillary sinus diseases confirmed clinically were analyzed, postprocessing of images was performed by using the software package at the workstation. All the cases were proved by surgery. RESULTS: Among 58 cases, there were 30 cases with inflammatory diseases; 6 cases with benign tumors; 8 cases with malignant tumors and 14 cases with fractures. The correct rate of CT diagnosis for location was 100%, and for the nature of the disease was 91.38%. CONCLUSIONS: 16 slices spiral CT was proved to be a good way to show the range of maxillary sinus diseases, the degree of bony change and the relation to surrounding tissues, but determination of the nature of the diseases should be incorporated with clinical and pathological findings.


Assuntos
Seio Maxilar/diagnóstico por imagem , Tomografia Computadorizada Espiral/métodos , Humanos , Reprodutibilidade dos Testes
13.
Neurosignals ; 12(6): 292-301, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14739559

RESUMO

It has been demonstrated that subcutaneous injection of bee venom (BV) can produce different types of pain and hypersensitivity including persistent spontaneous nociception (PSN), primary heat and mechanical hypersensitivity (hyperalgesia) and mirror-image heat (MIH) hypersensitivity in an individual animal, and the changes of spinal neurons are likely to be responsible for the production of these pain-related behaviors. In this study, we examined the roles of spinal protein kinase C (PKC) and protein kinase A (PKA) in the BV-induced different types of pain and hypersensitivity in conscious rats. We found that: (1). BV-induced primary heat hypersensitivity could be blocked by intrathecal pre- or posttreatment with a PKC inhibitor, chelerythrine chloride (CH), while a PKA inhibitor, N-(2-[P-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride (H89), had no effect. (2). BV-induced primary mechanical hypersensitivity could be blocked by pre- or posttreatment with H89, whereas CH had no effect. (3). Both pre- and posttreatment with H89 produced suppressive effects on both induction and maintenance of the BV-induced PSN and MIH hypersensitivity. Based on the present findings, we proposed that spinal PKC might be activated during the central processes of primary heat hypersensitivity, while spinal PKA is likely to be involved in primary mechanical hypersensitivity induced by subcutaneous BV chemical injury. Taken together with our previous report however, spinal PKC and PKA are likely to be simultaneously involved in the central processes of both PSN and MIH hypersensitivity.


Assuntos
Venenos de Abelha/toxicidade , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Temperatura Alta , Hipersensibilidade/etiologia , Proteína Quinase C/metabolismo , Medula Espinal/efeitos dos fármacos , Animais , Comportamento Animal , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Hipersensibilidade/metabolismo , Injeções Subcutâneas , Masculino , Dor/induzido quimicamente , Dor/metabolismo , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Pele/lesões , Medula Espinal/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA