Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31695, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38832271

RESUMO

Objective: In this study, we aimed to determine whether proly4-hydroxylase-III (P4HA3) could be used as a biomarker for the diagnosis of colorectal cancer (CRC) as well as for determining prognosis. Methods: We used The Cancer Genome Atlas (TCGA) database to analyze P4HA3 expression in CRC and further investigated the association between P4HA3 and clinicopathological parameters, immune infiltration, and prognosis of patients with CRC. Enrichment analysis was conducted to investigate the potential biological role of P4HA3 in CRC. To verify the results of TCGA analysis, we performed immunohistochemical staining of 180 clinical CRC tissue samples to probe into the relationship of P4HA3 expression with lymphocyte infiltration and immune checkpoints expression. Results: The expression of P4HA3 was significantly higher in CRC tissues and associated with a higher degree of malignancy and poorer prognosis in CRC. The results of enrichment analysis indicated that P4HA3 may be associated with the epithelial-mesenchymal transition process and the immune response. Immunohistochemical staining results showed that high P4HA3 expression was associated with high infiltration levels of CD8+ and Foxp3+ TILs and high PD-1/PD- L1 expression. Lastly, patients with CRC co-expressing P4HA3 and PD-1 had a significantly worse prognosis. Conclusion: High expression of P4HA3 is associated with adverse clinical features and immune cell infiltration in CRC, and has the potential to serve as a biomarker for predicting CRC prognosis.

2.
ACS Appl Mater Interfaces ; 16(17): 21610-21622, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647446

RESUMO

The treatment of acute myeloid leukemia (AML) remains unsatisfactory, owing to the absence of efficacious therapy regimens over decades. However, advances in molecular biology, including inhibiting the CXCR4/CXCL12 biological axis, have introduced novel therapeutic options for AML. Additionally, self-stimulated phototherapy can solve the poor light penetration from external sources, and it will overcome the limitation that traditional phototherapy cannot be applied to the treatment of AML. Herein, we designed and manufactured a self-stimulated photodynamic nanoreactor to enhance antileukemia efficacy and suppress leukemia recurrence and metastasis in AML mouse models. To fulfill our design, we utilized the CXCR4/CXCL12 biological axis and biomimetic cell membranes in conjunction with self-stimulated phototherapy. This nanoreactor possesses the capability to migrate into the bone marrow cavity, inhibit AML cells from infiltrating into the visceral organ, significantly enhance the antileukemia effect, and prolong the survival time of leukemic mice. Therefore, this nanoreactor has significant potential for achieving high success rates and low recurrence rates in leukemia treatment.


Assuntos
Leucemia Mieloide Aguda , Fotoquimioterapia , Receptores CXCR4 , Animais , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Camundongos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia
3.
J Nanobiotechnology ; 22(1): 103, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468261

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a prevalent inflammatory autoimmune disease characterised by persistent inflammation and joint damage with elevated levels of reactive oxygen species (ROS). Current treatment modalities for RA have significant limitations, including poor bioavailability, severe side effects, and inadequate targeting of inflamed joints. Herein, we synthesised cerium/manganese oxide nanoparticles (NPs) as efficient drug carriers with antioxidant and catalytic-like functions that can eliminate ROS to facilitate the polarization of macrophages phenotype from M1 to M2 and alleviate inflammation. Methotrexate (MTX), a first-line RA medication, was loaded into the NPs, which were further modified with bovine serum albumin (BSA) and integrated into dissolving hyaluronic acid-based microneedles (MNs) for transdermal delivery. RESULT: This innovative approach significantly enhanced drug delivery efficiency, reduced RA inflammation, and successfully modulated macrophage polarization toward an anti-inflammatory phenotype. CONCLUSION: This research not only presents a promising drug delivery strategy for RA but also contributes broadly to the field of immune disease treatment by offering an advanced approach for macrophage phenotypic reprogramming.


Assuntos
Artrite Reumatoide , Cério , Compostos de Manganês , Nanopartículas , Óxidos , Humanos , Manganês/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Artrite Reumatoide/tratamento farmacológico , Macrófagos , Inflamação , Cério/farmacologia
4.
Am Surg ; 90(6): 1756-1759, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38298032

RESUMO

Clinical and pathologic characteristics of the invasive ductal carcinoma (IDC) presenting as a thick-walled breast cyst are little known. Three female patients were included in this report. A palpable, nontender breast lump was found in all cases. While mammography showed a hyperdense mass, ultrasonography demonstrated a thick-walled cystic mass. Magnetic resonance imaging clearly showed the cystic breast lesions with ring-like or irregular rim enhancement. A grade III IDC was confirmed in all cases. All IDCs but one were estrogen receptor negative, progesterone receptor negative, and human epidermal growth factor receptor 2 negative, with merely weak progesterone receptor positivity (5%) in one case. All cases underwent surgical management first and postoperative chemotherapy. Breast malignancy presenting as a thick-walled cystic mass could be a highly aggressive IDC, even triple-negative breast cancer. It is imperative for breast cancer-related practitioners to identify the potentially malignant cystic lesions timely and adopt appropriate management.


Assuntos
Carcinoma Ductal de Mama , Neoplasias de Mama Triplo Negativas , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Cisto Mamário/diagnóstico , Cisto Mamário/patologia , Cisto Mamário/diagnóstico por imagem , Cisto Mamário/cirurgia , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/cirurgia , Neoplasias da Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Ductal de Mama/cirurgia , Imageamento por Ressonância Magnética , Mamografia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/cirurgia , Neoplasias de Mama Triplo Negativas/diagnóstico , Ultrassonografia Mamária
5.
Biomed Pharmacother ; 173: 116323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401523

RESUMO

Deubiquitination, a post-translational modification regulated by deubiquitinases, is essential for cancer initiation and progression. Ubiquitin-specific proteases (USPs) are essential elements of the deubiquitinase family, and are overexpressed in gastric cancer (GC). Through the regulation of several signaling pathways, such as Wnt/ß-Catenin and nuclear factor-κB signaling, and the promotion of the expression of deubiquitination- and stabilization-associated proteins, USPs promote the proliferation, metastasis, invasion, and epithelial-mesenchymal transition of GC. In addition, the expression of USPs is closely related to clinicopathological features, patient prognosis, and chemotherapy resistance. USPs therefore could be used as prognostic biomarkers. USP targeting small molecule inhibitors have demonstrated strong anticancer activity. However, they have not yet been tested in the clinic. This article provides an overview of the latest fundamental research on USPs in GC, aiming to enhance the understanding of how USPs contribute to GC progression, and identifying possible targets for GC treatment to improve patient survival.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Transdução de Sinais , Via de Sinalização Wnt , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal , Proliferação de Células
6.
J Trace Elem Med Biol ; 83: 127407, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325182

RESUMO

BACKGROUND: Generally, decreased zinc in the serum of tumor patients but increased zinc in tumor cells can be observed. However, the role of zinc homeostasis in myeloid leukemia remains elusive. BCR-ABL is essential for the initiation, maintenance, and progression of chronic myelocytic leukemia (CML). We are currently investigating the association between zinc homeostasis and CML. METHODS: Genes involved in zinc homeostasis were examined using three GEO datasets. Western blotting and qPCR were used to investigate the effects of zinc depletion on BCR-ABL expression. Furthermore, the effect of TPEN on BCR-ABL promoter activity was determined using the dual-luciferase reporter assay. MRNA stability and protein stability of BCR-ABL were assessed using actinomycin D and cycloheximide. RESULTS: Transcriptome data mining revealed that zinc homeostasis-related genes were associated with CML progression and drug resistance. Several zinc homeostasis genes were affected by TPEN. Additionally, we found that zinc depletion by TPEN decreased BCR-ABL mRNA stability and transcriptional activity in K562 CML cells. Zinc supplementation and sodium nitroprusside treatment reversed BCR-ABL downregulation by TPEN, suggesting zinc- and nitric oxide-dependent mechanisms. CONCLUSION: Our in vitro findings may help to understand the role of zinc homeostasis in BCR-ABL regulation and thus highlight the importance of zinc homeostasis in CML.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Apoptose , Etilenodiaminas/farmacologia , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Proteínas de Fusão bcr-abl/farmacologia , Genes abl , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Zinco/metabolismo
7.
Int J Nanomedicine ; 18: 7647-7660, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111845

RESUMO

Introduction: Stimulus-responsive nanocarrier systems are promising in cancer treatment. They improve drug stability and facilitate controlled drug release. However, single-responsive nanocarriers still face insufficient tumor targeting and low efficacy. Methods: In this study, we synthesized folate-modified DSPE-PEOz nanomicelles with PEG chains and loaded them with magnetic iron particles and doxorubicin (DOX). Folic acid (FA) was employed as a ligand to target cancer cells actively. The nanomicelles are biocompatible and acid-sensitive drug carriers. Magnetic field-responsive nanoparticles enable moderately controlled magnetothermal therapy of tumors regardless of tumor location. The pH/magnetic field dual-responsive nanomicelles shed their PEG layer in response to tumor tissue acidity and react to magnetic fields through magnetothermal effects. Results: In vitro and in vivo experiments demonstrated that the nanomicelles could efficiently target cancer cells, release drugs in response to pH changes, and enhance drug uptake through magnetothermal effects. Discussion: The dual-responsive magnetic nanomicelles are expected to enhance the anti-cancer efficacy of chemo/magnetothermal synergistic therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Micelas , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Portadores de Fármacos , Campos Magnéticos , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
8.
Heliyon ; 9(5): e15535, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37144183

RESUMO

The function played by cartilage intermediate layer protein 2 (CILP2) between colorectal cancer (CRC) progression and immune response remains unclear, especially with respect to immune cell infiltration and checkpoints. Materials and Methods: We examined CILP2 expression in The Cancer Genome Atlas (TCGA) COAD-READ cohort and analyzed its relationship with clinicopathological features, mutations, survival, and immunity. Gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene set enrichment analyses (GSEA) were performed to determine CILP2 related pathways. To further investigate the results of TCGA analysis, validation was performed using CRC cell lines, fresh pathological tissues, and a CRC tissue microarray (TMA). Results: In both TCGA and TMA cohorts, CILP2 expression was increased in CRC tissues and was associated with patient T stage (T3 and T4), N stage (N1), pathological stage (III and IV), and overall survival. Immune cell infiltration and checkpoint analysis revealed that CILP2 expression is highly correlated with multiple immune marker genes, including PD-1. In addition, results of enrichment analysis indicated that CILP2 related genes was mainly enriched in extracellular matrix related functions. Conclusion: Elevated CILP2 expression is associated with adverse CRC clinical features and immune cells, it has potential as a biomarker detrimental to CRC survival.

9.
Small ; 18(44): e2203114, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36148846

RESUMO

Although enormous success has been obtained for dendritic cells (DCs)-mediated antigen-specific T cells anticancer immunotherapy in the clinic, it still faces major challenging problems: insufficient DCs in tumor tissue and low response rate for tumor cells lacking antigen expression, especially in low immunogenic tumors such as pancreatic cancer. Here, these challenges are tackled through tumor microenvironment responsive nanogels with prominent tumor-targeting capability by Panc02 cell membranes coating and inhibition of tumor-derived prostaglandin E2 (PGE2), aimed at improving natural killer (NK) cells activation and inducing activated NK cells-dependent DCs recruitment. The engineered nanogels can on-demand release acetaminophen to inhibit PGE2 secretion, thus promoting the activity of NK cells for non-antigen-specific tumor elimination. Furthermore, activated NK cells can secrete chemokines as CC motif chemokine ligand 5 and X-C motif chemokine ligand 1 to recruit immature DCs, and then promote DCs maturation and induce antigen-dependent CD8+ T cells proliferation for enhancing antigen-specific immunotherapy. Notably, these responsive nanogels show excellent therapeutic effect on Panc02 pancreatic tumor growth and postsurgical recurrence, especially combination of the programmed cell death-ligand 1 checkpoint-blockade immunotherapy. Therefore, this study provides a simple strategy for enhancing low immunogenic tumors immunotherapy through an antigen-independent way and antigen-dependent way synergetically.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pancreáticas , Humanos , Nanogéis , Células Dendríticas/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Ligantes , Células Matadoras Naturais , Imunoterapia , Quimiocinas/metabolismo , Neoplasias Pancreáticas/terapia , Microambiente Tumoral
10.
Redox Biol ; 56: 102451, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067704

RESUMO

OBJECTIVE: Glioblastoma is one of the most common intracranial malignant tumors with an unfavorable prognosis, and iron metabolism as well as ferroptosis are implicated in the pathogenesis of glioblastoma. The present study aims to decipher the role and mechanisms of tripartite motif-containing protein 7 (TRIM7) in ferroptosis and glioblastoma progression. METHODS: Stable TRIM7-deficient or overexpressing human glioblastoma cells were generated with lentiviral vectors, and cell survival, lipid peroxidation and iron metabolism were evaluated. Immunoprecipitation, protein degradation and ubiquitination assays were performed to demonstrate the regulation of TRIM7 on its candidate proteins. RESULTS: TRIM7 expression was elevated in human glioblastoma cells and tissues. TRIM7 silence suppressed growth and induced death, while TRIM7 overexpression facilitated growth and inhibited death of human glioblastoma cells. Meanwhile, TRIM7-silenced cells exhibited increased iron accumulation, lipid peroxidation and ferroptosis, which were significantly reduced by TRIM7 overexpression. Mechanistically, TRIM7 directly bound to and ubiquitinated nuclear receptor coactivator 4 (NCOA4) using K48-linked chains, thereby reducing NCOA4-mediated ferritinophagy and ferroptosis of human glioblastoma cells. Moreover, we found that TRIM7 deletion sensitized human glioblastoma cells to temozolomide therapy. CONCLUSION: We for the first time demonstrate that TRIM7 modulates NCOA4-mediated ferritinophagy and ferroptosis in glioblastoma cells, and our findings provide a novel insight into the progression and treatment for human glioblastoma.


Assuntos
Ferroptose , Glioblastoma , Autofagia , Ferroptose/genética , Glioblastoma/genética , Humanos , Ferro/metabolismo , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo , Temozolomida , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Photodiagnosis Photodyn Ther ; 40: 103058, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35944846

RESUMO

Pancreatic cancer is a lethal malignancy and only around 4% of patients will live 5 years post-diagnosis. Photodynamic therapy (PDT) is a promising strategy for treating malignant tumors because of its high selectivity. Through the colocalization of light, oxygen and photosensitizer, a large number of reactive oxygen species (ROS) are generated under excitation at a specific wavelength of a laser, which can induce DNA damage and destroy cancer cells. However, the repair mechanism of cell will repair part of the damaged DNA, which could reduce the efficiency of PDT. The poly (ADP-Ribose) polymerase (PARP) plays a wide and multifaceted role in the cellular response to DNA damage, with growing evidence for participation in multiple pathways of DNA damage repair and genome maintenance. Cells require PARP to resolve single-strand DNA breaks (SSBs) induced by chemotherapy agents. Its inhibition is thought to result in the accumulation of damage in DNA, which may eventually lead to cell death. The combination therapy of PDT and PARP inhibitors may benefit patients. In this study, we design and synthesize a zeolitic imidazolate framework-8 (ZIF-8) to co-deliver DNA damaging agent Chlorin e6 (Ce6) and PARP inhibitor Olaparib (Ola). Ce6 and Ola demonstrate strong synergistic actions, providing a novel approach for the treatment of pancreatic cancer.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Fotoquimioterapia , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Fotoquimioterapia/métodos , Poli(ADP-Ribose) Polimerases , Dano ao DNA , Antineoplásicos/farmacologia , DNA , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral
12.
Front Genet ; 13: 874667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899199

RESUMO

Pancreatic adenocarcinoma (PAAD) is one of the most common malignant tumors with poor prognosis worldwide. Mounting evidence suggests that the expression of lncRNAs and the infiltration of immune cells have prognostic value for patients with PAAD. We used Gene Expression Omnibus (GEO) database and identified six genes (COL1A2, ITGA2, ITGB6, LAMA3, LAMB3, and LAMC2) that could affect the survival rate of pancreatic adenocarcinoma patients. Based on a series of in silico analyses for reverse prediction of target genes associated with the prognosis of PAAD, a ceRNA network of mRNA (COL1A2, ITGA2, LAMA3, LAMB3, and LAMC2)-microRNA (miR-15a-5p)-long non-coding RNA (LINC00511, LINC01578, PVT1, and TNFRSF14-AS1) was constructed. We used the algorithm "CIBERSORT" to assess the proportion of immune cells and found three overall survival (OS)-associated immune cells (monocytes, M1 macrophages, and resting mast cell). Moreover, the OS-associated gene level was significantly positively associated with immune checkpoint expression and biomarkers of immune cells. In summary, our results clarified that ncRNA-mediated upregulation of OS-associated genes and tumor-infiltration immune cells (monocytes, M1 macrophages M1, and resting mast cell resting) correlated with poor prognosis in PAAD.

13.
J Mater Chem B ; 9(38): 8031-8037, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34486010

RESUMO

Nanocarriers have shown great advantages in increasing the efficiency of drug delivery and reducing drug side effects. However, their lack of targeting and on-demand drug release abilities will seriously limit their clinical application. Herein, we report tumor cell membrane coated nanogels (NGs) with redox/pH dual-responsive behavior for enhanced tumor chemotherapy. The cell membrane coating improves the tumor targeting efficiency, and stimuli-responsive drug release enhances the therapeutic effects. These NGs are well dispersed in PBS with an average size of 109.1 ± 5.2 nm and a narrow polydispersity index of 0.12. Both in vitro and in vivo studies indicate that these NGs can responsively release the therapeutic drug DOX under acidic conditions or high GSH concentrations and effectively inhibit tumor growth. Based on the results, this nanogel shows promise as a platform for tumor-targeted chemotherapy for future clinical translation.


Assuntos
Membrana Celular/química , Portadores de Fármacos/química , Nanogéis/química , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Feminino , Glutationa/química , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Oxirredução
14.
Med Oncol ; 38(4): 34, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33660148

RESUMO

Protein interacting with C-kinase 1 (PICK1) is a 415-aa multidomain scaffold protein encoded by the PICK1 gene. Accumulating evidence suggests that PICK1 is involved in the progression of cancer. However, the role of PICK1 in gastric cancer (GC) remains largely unknown. Using integrated analysis of publicly available GC transcriptome data from the Gene Expression Omnibus (GEO) database and immunohistochemistry analysis of samples obtained from clinical GC patients, we found that PICK1 expression was significantly down-regulated in gastric tumor tissues in comparison with adjacent normal tissues. Our analyses also revealed that decreased expression of PICK1 conferred a disadvantage on overall survival time in GC patients. Additionally, PICK1 expression showed a strong association with the epithelial-mesenchymal transition (EMT) pathway, and PICK1 might represent a functional bridge for EMT. Moreover, PICK1 expression was significantly decreased in the EMT subtype of GC and was negatively correlated with the expression of fibronectin 1 (FN1) and myosin light chain 9 (MYL9) mRNAs. Thus, our study provides evidence that PICK1 is a promising biomarker for the molecular etiology of GC.


Assuntos
Proteínas de Transporte/metabolismo , Transição Epitelial-Mesenquimal , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/patologia , Biomarcadores Tumorais/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Expressão Gênica , Humanos , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Proteínas Nucleares/genética , Prognóstico , Mapas de Interação de Proteínas , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade
15.
Oncol Lett ; 21(1): 61, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33281972

RESUMO

Crizotinib, an inhibitor of the hepatocyte growth factor receptor oncogene, has been studied extensively regarding its antitumor and clinically beneficial effects in non-small cell lung cancer (NSCLC). However, crizotinib's effects on cancer cell energy metabolism, which is linked with tumor proliferation and migration, in NSCLC are unclear. Therefore, the present study focused on crizotinib's effect on NSCLC glucose metabolism. Crizotinib's effects on glucose metabolism, proliferation, migration and apoptosis in A549 cells were explored. Several other inhibitors, including 2-DG, rotenone and MG132, were used to define the mechanism of action in further detail. Data showed that crizotinib treatment reduced A549 cell viability, increased glucose consumption and lactate production, while decreased mitochondrial transmembrane potential (Δψm) and ATP production. Crizotinib treatment, combined with rotenone and MG132 treatment, further inhibited ATP production and Δψm and increased reactive oxygen species content. However, crizotinib did not suppress cell proliferation, migration, ATP production, Δψm or mitochondrial-related apoptosis signals further following 2-DG-mediated inhibition of glycolysis. These results indicated that crizotinib induced low mitochondrial function and compensatory high anaerobic metabolism, but failed to maintain sufficient ATP levels. The alternation of metabolic pattern and insufficient ATP supply may serve important roles in the metabolic antitumor mechanism of crizotinib in A549 cells.

16.
Int J Nanomedicine ; 16: 8433-8446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002237

RESUMO

PURPOSE: Cell membrane-camouflaged nanoparticles (NPs) are drawing increasing attention because their surfaces acquire some characteristics of the cell membranes, making them a unique class of biomimetic materials for diverse applications. Modification of cell membrane or combination of different types of membranes can enhance their functionality. METHODS: We prepared platelet and tumor cell membrane camouflaged ß-mangostin-loaded NPs, which were synthesized with platelet-C6 hybrid biomimetic coating, poly(lactic-co-glycolic acid), and ß-mangostin (ß-PCNPs). Then, we evaluated their targeting ability and anticancer activity against glioma in vitro and in vivo. RESULTS: Biomimetic coating enhanced active drug targeting and immune escape properties of nanocarrier in C6 and THP-1 cells, respectively, which improved their cytotoxicity. ß-PCNPs were characterized to study the inherent properties of both source cells. Compared with bare ß-NPs, ß-PCNPs exhibited high tumor-targeting capability and induced apoptosis of C6 cells in vitro. Similarly, intravenous administration of drug through ß-PCNPs resulted in enhanced tumor-targeting and exhibited excellent rate of inhibition of glioma tumor growth in mice. Moreover, the blood circulation time of drug in mice in the ß-PCNP group was markedly prolonged and these mice exhibited better outcome than those in the ß-NP group. CONCLUSION: These results provide a new strategy of utilizing PCNPs as carriers for drug delivery, which improves the targeting efficiency and therapeutic efficacy of chemotherapeutic agents for glioma therapy.


Assuntos
Antineoplásicos , Glioma , Nanopartículas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Membrana Celular , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Camundongos
17.
Drug Des Devel Ther ; 14: 5315-5324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33293793

RESUMO

BACKGROUND: Glioma is the most common malignant tumor of the nervous system, which accounts for more than 45% of central nervous system tumors and seriously threatens our health. Because of high mortality rate, limitations, and many complications of traditional treatment methods, new treatment methods are urgently needed. ß-Mangostin is a natural compound derived from the fruit of Garcinia mangostana L. and it has anticancer activity in several types of cancer cells. However, the antitumor effect of ß-mangostin in glioma has not been clarified. Hence, this study aimed to investigate its therapeutic effects on gliomas. MATERIALS AND METHODS: To study the effect of ß-mangostin on glioma cells, cell viability assay, reactive oxygen species production, cell cycle, apoptosis, and mitochondrial membrane potential were evaluated in the C6 cell line in vitro. Immunofluorescence and Western blotting were used to analyze protein expression and phosphorylation to study its mechanism of action. A subcutaneous xenograft model was used to investigate the effect of ß-mangostin on tumorigenesis in vivo. RESULTS: We found that ß-mangostin can inhibit glioma cell growth and induce oxidative damage in vitro. In addition, it reduces the phosphorylated form levels of PI3K, AKT and mTOR. Furthermore, the phosphorylated form levels of PI3K, AKT and mTOR were increased after the PI3K inhibitor was added. In vivo experiments showed that ß-mangostin can inhibit tumor growth as shown by its reduced size and weight. CONCLUSION: This study suggests that ß-mangostin can inhibit cell proliferation and induce oxidative damage in cells. It is the first study to demonstrate that ß-mangostin induces oxidative damage in glioma cells by inhibiting the PI3K/AKT/mTOR signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Garcinia mangostana/química , Glioma/tratamento farmacológico , Extratos Vegetais/farmacologia , Xantonas/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glioma/metabolismo , Glioma/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas , Xantonas/química , Xantonas/isolamento & purificação
18.
ACS Omega ; 5(39): 25156-25163, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33043194

RESUMO

C21 steroidal glycosides have been extensively reported for treating several types of cancer and are widely found in Marsdenia tenacissima. In this study, a C21 fraction was synthesized from M. tenacissima, and its anti-cancer potency was assessed against in vitro gastric cell lines BGC-823, SGC-7901, and AGS. Significant growth inhibition and cell cycle arrest were observed in C21 fraction-treated gastric cancer cells. The results of apoptotic staining techniques in C21 fraction-treated gastric cells were confirmed with excess reactive oxygen species generation. Moreover, SOD and H2O2 levels were increased by C21 fraction, especially when combined with chloroquine (CQ). The apoptotic inducing potential of C21 fraction was also evidenced by upregulation of proapoptotic proteins cleaved-PARP and BAX and downregulation of antiapoptotic proteins Bcl-2 and p-AKT by western blot, especially in the presence of the autophagy inhibitor CQ. The results showed that the apoptosis of gastric cancer cells caused by C21 fraction was enhanced by inhibiting autophagy. The current findings reveal a new mechanism for the antitumor activity of C21 fraction on gastric cancer.

19.
Oncol Res ; 26(2): 173-182, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-28109087

RESUMO

Glioblastoma is a lethal disease featuring a high proliferation of tumor cells, excessive angiogenesis, and heavy drug resistance. The overall survival of glioblastoma patients has been dismal, even with an intensive standard of care. Recent advances in immune checkpoint blockades are changing the treatment of cancers. However, the efficacy of immune checkpoint blockades in glioblastoma is still unclear. Here we investigated the roles of CD103+ cells in regulating the effect of immune checkpoint blockades in glioblastoma mouse models. Our findings indicated that the murine glioblastoma model was not sensitive to immune checkpoint blockades. Flt3L, a growth factor for CD103+ cells, could significantly increase the number of CD103+ dendritic cells in the murine glioblastoma model and, thus, sensitize murine glioblastoma to immune checkpoint blockades. Downstream analysis indicated that the Flt3L and immune checkpoint blockade combination increased the number of tumor-infiltrating CD8+ cells, decreased immune checkpoint expression, and therefore enhanced the antitumor immune response in the murine glioblastoma model. These findings suggested that Flt3L could enhance the efficacy of immune checkpoint blockades in glioblastoma via expanding CD103+ dendritic cells and downstream antitumor immune response.


Assuntos
Antígenos CD/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glioblastoma/imunologia , Glioblastoma/metabolismo , Imunomodulação , Cadeias alfa de Integrinas/metabolismo , Proteínas de Membrana/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Biomarcadores , Biomarcadores Tumorais/antagonistas & inibidores , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Imunomodulação/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Terapia de Alvo Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Exp Ther Med ; 14(3): 2477-2484, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28962183

RESUMO

An extract from a traditional Chinese herb, Marsdeniae tenacissima (trade name, Xiao-Ai-Ping) has been approved for use on the Chinese market as a cancer chemotherapeutic agent for decades. Previous studies have demonstrated the cytostatic and pro-apoptotic effects of M. tenacissima extract (MTE) in multiple cancer cells. However, the contributions of MTE to the proliferation and apoptosis of hepatoma carcinoma cells and the underlying mechanisms remain unclear. In the present study, Bel-7402 cells were incubated with increasing concentrations of MTE ranging from 0-320 µl/ml to explore the effects and potential mechanisms of MTE on the proliferation and apoptosis of Bel-7402 cells. 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfopheny)-2H-tetrazolium, inner salt and propidium iodide (PI)-stained flow cytometry assays demonstrated that MTE significantly suppressed the proliferation of Bel-7402 cells in a dose-dependent manner by arresting the cell cycle at S phase (P<0.05). Annexin V-fluorescein isothiocyanate PI-stained flow cytometry confirmed the significantly pro-apoptotic effect of MTE at both 160 and 240 µl/ml (P<0.001). Reverse transcription-quantitative polymerase chain reaction and western blot analysis demonstrated that MTE (both 160 and 240 µl/ml) induced a significant downregulation of B-cell lymphoma (Bcl)-2 (P<0.01), upregulation of Bcl-2-associated X protein (P<0.01) and activation of caspase-3 (P<0.05). Furthermore, a significant downregulation of murine double minute-2 (MDM2) (P<0.001) and activation of p53 (P<0.001) in Bel-7402 cells following treatment with 160 or 240 µl/ml MTE was observed, accompanied by the inhibition of the nuclear factor (NF)-κB pathway (P<0.001). These results suggested that MTE inhibited growth and exhibited pro-apoptotic effects in Bel-7402 cells, which was mediated by downregulation of the MDM2-induced p53-dependent mitochondrial apoptosis pathway and blocking the NF-κB pathway. Overall, these data serve as preliminary identification of the significant roles of MTE in hepatic carcinoma cells, and suggest that MTE may be a promising candidate for hepatocellular carcinoma therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA