Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Circ Res ; 132(1): e22-e42, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36444722

RESUMO

BACKGROUND: Excess cholesterol accumulation in lesional macrophages elicits complex responses in atherosclerosis. Epsins, a family of endocytic adaptors, fuel the progression of atherosclerosis; however, the underlying mechanism and therapeutic potential of targeting Epsins remains unknown. In this study, we determined the role of Epsins in macrophage-mediated metabolic regulation. We then developed an innovative method to therapeutically target macrophage Epsins with specially designed S2P-conjugated lipid nanoparticles, which encapsulate small-interfering RNAs to suppress Epsins. METHODS: We used single-cell RNA sequencing with our newly developed algorithm MEBOCOST (Metabolite-mediated Cell Communication Modeling by Single Cell Transcriptome) to study cell-cell communications mediated by metabolites from sender cells and sensor proteins on receiver cells. Biomedical, cellular, and molecular approaches were utilized to investigate the role of macrophage Epsins in regulating lipid metabolism and transport. We performed this study using myeloid-specific Epsin double knockout (LysM-DKO) mice and mice with a genetic reduction of ABCG1 (ATP-binding cassette subfamily G member 1; LysM-DKO-ABCG1fl/+). The nanoparticles targeting lesional macrophages were developed to encapsulate interfering RNAs to treat atherosclerosis. RESULTS: We revealed that Epsins regulate lipid metabolism and transport in atherosclerotic macrophages. Inhibiting Epsins by nanotherapy halts inflammation and accelerates atheroma resolution. Harnessing lesional macrophage-specific nanoparticle delivery of Epsin small-interfering RNAs, we showed that silencing of macrophage Epsins diminished atherosclerotic plaque size and promoted plaque regression. Mechanistically, we demonstrated that Epsins bound to CD36 to facilitate lipid uptake by enhancing CD36 endocytosis and recycling. Conversely, Epsins promoted ABCG1 degradation via lysosomes and hampered ABCG1-mediated cholesterol efflux and reverse cholesterol transport. In a LysM-DKO-ABCG1fl/+ mouse model, enhanced cholesterol efflux and reverse transport due to Epsin deficiency was suppressed by the reduction of ABCG1. CONCLUSIONS: Our findings suggest that targeting Epsins in lesional macrophages may offer therapeutic benefits for advanced atherosclerosis by reducing CD36-mediated lipid uptake and increasing ABCG1-mediated cholesterol efflux.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo
2.
Front Cardiovasc Med ; 8: 742382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557535

RESUMO

There has been a rise in the prevalence of non-alcohol fatty liver disease (NAFLD) due to the popularity of western diets and sedentary lifestyles. One quarter of NAFLD patients is diagnosed with non-alcoholic steatohepatitis (NASH), with histological evidence not only of fat accumulation in hepatocytes but also of liver cell injury and death due to long-term inflammation. Severe NASH patients have increased risks of cirrhosis and liver cancer. In this review, we discuss the pathogenesis and current methods of diagnosis for NASH, and current status of drug development for this life-threatening liver disease.

3.
Nat Commun ; 11(1): 4666, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938943

RESUMO

Intercalated discs (ICD), specific cell-to-cell contacts that connect adjacent cardiomyocytes, ensure mechanical and electrochemical coupling during contraction of the heart. Mutations in genes encoding ICD components are linked to cardiovascular diseases. Here, we show that loss of Xinß, a newly-identified component of ICDs, results in cardiomyocyte proliferation defects and cardiomyopathy. We uncovered a role for Xinß in signaling via the Hippo-YAP pathway by recruiting NF2 to the ICD to modulate cardiac function. In Xinß mutant hearts levels of phosphorylated NF2 are substantially reduced, suggesting an impairment of Hippo-YAP signaling. Cardiac-specific overexpression of YAP rescues cardiac defects in Xinß knock-out mice-indicating a functional and genetic interaction between Xinß and YAP. Our study reveals a molecular mechanism by which cardiac-expressed intercalated disc protein Xinß modulates Hippo-YAP signaling to control heart development and cardiac function in a tissue specific manner. Consequently, this pathway may represent a therapeutic target for the treatment of cardiovascular diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas com Domínio LIM/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cardiomiopatia Dilatada/genética , Comunicação Celular , Proteínas de Ciclo Celular/genética , Proliferação de Células , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/crescimento & desenvolvimento , Via de Sinalização Hippo , Proteínas com Domínio LIM/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais , Proteínas de Sinalização YAP
4.
J Vis Exp ; (150)2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31475991

RESUMO

Circulating tumor cells (CTCs) derived from the primary tumor are shed into the bloodstream or lymphatic system. These rare cells (1-10 cells per mL of blood) warrant a poor prognosis and are correlated with shorter overall survival in several cancers (e.g., breast, prostate and colorectal). Currently, the anti-EpCAM-coated magnetic bead-based CTC capturing system is the gold standard test approved by the U.S. Food and Drug Administration (FDA) for enumerating CTCs in the bloodstream. This test is based on the use of magnetic beads coated with anti-EpCAM markers, which specifically target epithelial cancer cells. Many studies have illustrated that EpCAM is not the optimal marker for CTC detection. Indeed, CTCs are a heterogeneous subpopulation of cancer cells and are able to undergo an epithelial-to-mesenchymal transition (EMT) associated with metastatic proliferation and invasion. These CTCs are able to reduce the expression of cell surface epithelial marker EpCAM, while increasing mesenchymal markers such as vimentin. To address this technical hurdle, other isolation methods based on physical properties of CTCs have been developed. Microfluidic technologies enable a label-free approach to CTC enrichment from whole blood samples. The spiral microfluidic technology uses the inertial and Dean drag forces with continuous flow in curved channels generated within a spiral microfluidic chip. The cells are separated based on the differences in size and plasticity between normal blood cells and tumoral cells. This protocol details the different steps to characterize the programmed death-ligand 1 (PD-L1) expression of CTCs, combining a spiral microfluidic device with customizable immunofluorescence (IF) marker set.


Assuntos
Antígeno B7-H1/sangue , Carcinoma Pulmonar de Células não Pequenas/sangue , Neoplasias Pulmonares/sangue , Microfluídica/métodos , Células Neoplásicas Circulantes/metabolismo , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Separação Celular/métodos , Transição Epitelial-Mesenquimal/fisiologia , Imunofluorescência/métodos , Humanos , Separação Imunomagnética/métodos , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA