Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 142(Pt A): 113055, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243556

RESUMO

OBJECTIVES: Lipopolysaccharide (LPS), also known as endotoxin, is the main toxic component of the cell wall of gram negative bacteria, which is released after bacterial death and widely exists in the living environment. Human exposure to endotoxin may cause sepsis. The occurrence of septic liver injury is a prominent factor contributing to mortality in patients with sepsis. The purpose of this study is to explore the role of Sappanone A (SA), a homoisoflavonoid isolated from the heartwood of Caesalpinia sappan Linn., in LPS-induced acute liver injury (ALI). METHODS: An LPS-induced ALI mouse model was used to evaluate the effects of SA on septic ALI, and murine cells were treated with LPS to explore the mechanisms underlying SA-provided effects. RESULTS: Treating SA substantially improved LPS-induced ALI. We also performed in silico prediction and RNA-seq analysis to elucidate SA's potential mechanisms of action. The terms generated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of predicted target proteins of SA include inflammation, oxidative stress, and apoptosis; protein-protein interaction network (PPI) analysis indicated that fas binding protein 1 (Fbf1) has the strongest correlation with SA. Consistently, RNA-seq analysis displayed that SA administration regulates cell apoptosis and inflammatory responses, which was further confirmed by checking related markers in livers of mice and murine cells challenged with LPS. Of note, SA significantly decreased the expression of Fbf1 in mouse livers, and promoted apoptosis of injured hepatocytes and hepatocyte proliferation, which were substantially abolished by Fbf1 knockdown in AML12 cells. Besides, SA could increase M2 phenotype polarization but inhibit M1 macrophage polarization in LPS-induced ALI in mice. CONCLUSION: SA enhances hepatocyte proliferation and liver repair in LPS-induced ALI in mcie by promoting injured hepatocyte apoptosis through Fbf1 inhibition and regulating macrophage polarization.

2.
Antioxidants (Basel) ; 12(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37760020

RESUMO

Liver fibrosis is a major challenge to global health because of its various complications, including cirrhosis and hepatocarcinoma, while no effective treatment is available for it. Sappanone A (SA) is a homoisoflavonoid extracted from the heartwood of Caesalpinia sappan Linn. with anti-inflammatory and antioxidant properties. However, the effects of SA on hepatic fibrosis remain unknown. This study aimed to investigate the protective effects of SA on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. To establish a liver fibrosis model, mice were treated intraperitoneally (i.p.) with CCl4 for 4 weeks. SA (25, 50, and 100 mg/kg body weight) was i.p. injected every other day during the same period. Our data indicated that SA decreased liver injury, fibrotic responses, and inflammation due to CCl4 exposure. Consistently, SA reduced oxidative stress and its-mediated hepatocyte death in fibrotic livers. Of note, SA could not directly affect the activation of hepatic stellate cells. Mechanistically, SA treatment lessened oxidative stress-triggered cell death in hepatocytes after CCl4 exposure. SA down-regulated the expression of M1 macrophage polarization markers (CD86 and iNOS) and up-regulated the expression of M2 macrophage polarization markers (CD163, IL-10, and Arg1) in livers and macrophages. Meanwhile, SA induced the activation of peroxisome proliferator-activated receptor gamma (PPARγ). However, decreased inflammatory responses and the trend of M2 macrophage polarization provided by SA were substantially abolished by SR202 (a PPARγ inhibitor) treatment in macrophages. Additionally, SA treatment promoted fibrosis regression. Taken together, our findings revealed that treatment with SA alleviated CCl4-induced fibrotic liver in mice through suppression of oxidative stress-mediated hepatocyte death and promotion of M2 macrophage polarization via PPARγ. Thus, SA might pave the way for a new hepatoprotective agent to treat liver fibrosis.

3.
Toxicology ; 480: 153336, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36126895

RESUMO

Sappanone A (SA), a homoisoflavonoid compound extracted from the heartwood of Caesalpinia sappan Linn., exerts anti-inflammatory and antioxidant activities. However, the effects of SA on acetaminophen (APAP) overdose-induced acute liver injury (ALI) have not been determined yet. This study aims to explore the protective effects of SA and the potential mechanisms of action. Mice were pretreated with SA (25, 50, and 100 mg/kg) by intraperitoneal (i.p.) injection for seven days prior to APAP (300 mg/kg, i.p.) administration. At 12 h after APAP injection, serum and liver samples were collected. Primary murine hepatocytes were used to investigate the underlying mechanisms. SA pretreatment dose-dependently attenuated APAP-induced ALI, as validated by reduced serum alanine/aspartate aminotransferase levels, histopathologic lesions, and oxidative stress. Consistently, pretreatment with SA reduced the formation of APAP protein adducts in damaged livers of mice. Mechanistically, SA could facilitate the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and thus promote cellular glutathione (GSH) synthesis. The hepatoprotective outcomes provided by SA were significantly abolished by treatment with ML385, a Nrf2 inhibitor. Besides, anti-inflammatory property of SA reduced inflammatory reaction in injured livers of mice. Of note, posttreatment with SA reveals significant therapeutic influences against APAP-induced ALI in mice. Collectively, our findings demonstrated that pretreated-SA ameliorated APAP-mediated ALI in mice, at least in part, by reducing the generation of APAP protein adducts via Nrf2-enhanced GSH synthesis, and by diminishing hepatic inflammation. Therefore, SA could be a potential hepatoprotective agent for treating ALI.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/toxicidade , Alanina/metabolismo , Alanina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Aspartato Aminotransferases , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Glutationa/metabolismo , Isoflavonas , Fígado , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA