Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5020, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596268

RESUMO

Studies have suggested that MHC class I (MHC I) molecules fluctuate rapidly between numerous conformational states and these motions support peptide sampling. To date, MHC I intermediates are largely uncharacterized experimentally and remain elusive. Here, we present x-ray crystal structures of HLA-B8 loaded with 20mer peptides that show pronounced distortions at the N-terminus of the groove. Long stretches of N-terminal amino acid residues are missing in the electron density maps creating an open-ended groove. Our structures also reveal highly unusual features in MHC I-peptide interaction at the N-terminus of the groove. Molecular dynamics simulations indicate that the complexes have varying degrees of conformational flexibility in a manner consistent with the structures. We suggest that our structures have captured the remarkable molecular dynamics of MHC I-peptide interaction. The visualization of peptide-dependent conformational motions in MHC I is a major step forward in our conceptual understanding of dynamics in high-affinity peptide selection.


Assuntos
Genes MHC Classe I , Simulação de Dinâmica Molecular , Membrana Celular , Conformação Molecular , Peptídeos
2.
Angew Chem Int Ed Engl ; 61(39): e202203560, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35904863

RESUMO

Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a key enzyme involved in the trimming of antigenic peptides presented by Major Histocompatibility Complex class I. It is a target of growing interest for the treatment of autoimmune diseases and in cancer immunotherapy. However, the discovery of potent and selective ERAP2 inhibitors is highly challenging. Herein, we have used kinetic target-guided synthesis (KTGS) to identify such inhibitors. Co-crystallization experiments revealed the binding mode of three different inhibitors with increasing potency and selectivity over related enzymes. Selected analogues engage ERAP2 in cells and inhibit antigen presentation in a cellular context. 4 d (BDM88951) displays favorable in vitro ADME properties and in vivo exposure. In summary, KTGS allowed the discovery of the first nanomolar and selective highly promising ERAP2 inhibitors that pave the way of the exploration of the biological roles of this enzyme and provide lead compounds for drug discovery efforts.


Assuntos
Aminopeptidases , Apresentação de Antígeno , Aminopeptidases/metabolismo , Antígenos de Histocompatibilidade Classe I , Peptídeos/metabolismo
3.
Viruses ; 13(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34372495

RESUMO

The enteric human adenoviruses of species F (HAdVs-F), which comprise HAdV-F40 and HAdV-F41, are significant pathogens that cause acute gastroenteritis in children worldwide. The early transcription unit 3 (E3) of HAdVs-F is markedly different from that of all other HAdV species. To date, the E3 proteins unique to HAdVs-F have not been characterized and the mechanism by which HAdVs-F evade immune defenses in the gastrointestinal (GI) tract is poorly understood. Here, we show that HAdV-F41 infection of human intestinal HCT116 cells upregulated the expression of MHC class I-related chain A (MIC A) and MIC B relative to uninfected cells. Our results also showed that, for MIC B, this response did not however result in a significant increase of MIC B on the cell surface. Instead, MIC B was largely sequestered intracellularly. Thus, although HAdV-F41 infection of HCT116 cells upregulated MIC B expression, the ligand remained inside infected cells. A similar observation could not be made for MIC A in these cells. Our preliminary findings represent a novel function of HAdVs-F that may enable these viruses to evade immune surveillance by natural killer (NK) cells in the infected gut, thereby paving the way for the future investigation of their unique E3 proteins.


Assuntos
Adenoviridae/patogenicidade , Fator 15 de Diferenciação de Crescimento/classificação , Fator 15 de Diferenciação de Crescimento/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Adenoviridae/imunologia , Proteínas Ligadas por GPI/genética , Células HCT116 , Humanos , Filogenia , Análise de Sequência de DNA
4.
Methods Mol Biol ; 1988: 31-43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147930

RESUMO

Studies over the last decade on characterization of the major histocompatibility complex (MHC) class I antigen presentation pathway have highlighted the importance of antigen processing, peptide transport, peptide trimming, and peptide selection as key stages for the development of optimal peptide repertoires that are presented by MHC class I molecules to cytotoxic T lymphocytes (CTLs). The study of these stages and how they are regulated, is fundamental for progress in understanding the adaptive immune system. Here we describe an in vitro assay monitoring peptide trimming by the human endoplasmic reticulum amino peptidases 1 (ERAP1) and ERAP2 (ERAPs) as a tool to characterize trimming events and gain a better understanding of the role and function of ERAPs in peptide repertoire development. Specifically, our assay allows for monitoring trimming of free but also of MHC I-bound peptides which may reflect the physiological situation best.


Assuntos
Aminopeptidases/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Biologia Molecular/métodos , Sequência de Aminoácidos , Animais , Baculoviridae/metabolismo , Humanos , Ligantes , Peptídeos/química , Peptídeos/metabolismo , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Células Sf9
5.
Sci Rep ; 6: 28902, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27514473

RESUMO

The processing of MHC class I antigenic precursor peptides by the endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 is an important event in the cell biology of antigen presentation. To date, the molecular context by which the ERAP enzymes trim precursor peptides, and how ERAPs shape peptide repertoires, remain open questions. Using ERAP1 and ERAP2 heterodimers (ERAP1/2), and N-terminally extended model and natural peptides in their free and HLA-B*0801-bound forms, we characterized the mode of action of ERAPs. We provide evidence that ERAP1/2 can trim MHC I-bound precursor peptides to their correct and final lengths, albeit more slowly than the corresponding free precursors. Trimming of MHC I-bound precursors by ERAP1/2 increases the conformational stability of MHC I/peptide complexes. From the data, we propose a molecular mechanistic model of ERAP1/2 as peptide editors. Overall, our study provides new findings on a significant issue of the ERAP-mediated processing pathway of MHC class I antigens.


Assuntos
Aminopeptidases/química , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Menor/química , Peptídeos/química , Dicroísmo Circular , Dissulfetos , Epitopos/química , Temperatura Alta , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Especificidade por Substrato , Termolisina/química
6.
J Immunol ; 197(4): 1399-407, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27385781

RESUMO

Adenoviruses (Ads) subvert MHC class I Ag presentation and impair host anti-Ad cellular activities. Specifically, the Ad-encoded E3-19K immunomodulatory protein targets MHC class I molecules for retention within the endoplasmic reticulum of infected cells. We report the x-ray crystal structure of the Ad type 4 (Ad4) E3-19K of species E bound to HLA-A2 at 2.64-Å resolution. Structural analysis shows that Ad4 E3-19K adopts a tertiary fold that is shared only with Ad2 E3-19K of species C. A comparative analysis of the Ad4 E3-19K/HLA-A2 structure with our x-ray structure of Ad2 E3-19K/HLA-A2 identifies species-specific features in HLA-A2 recognition. Our analysis also reveals common binding characteristics that explain the promiscuous, and yet high-affinity, association of E3-19K proteins with HLA-A and HLA-B molecules. We also provide structural insights into why E3-19K proteins do not associate with HLA-C molecules. Overall, our study provides new information about how E3-19K proteins selectively engage with MHC class I to abrogate Ag presentation and counteract activation of CD8(+) T cells. The significance of MHC class I Ag presentation for controlling viral infections, as well as the threats of viral infections in immunocompromised patients, underline our efforts to characterize viral immunoevasins, such as E3-19K.


Assuntos
Adenoviridae/imunologia , Adenoviridae/ultraestrutura , Proteínas E3 de Adenovirus/imunologia , Proteínas E3 de Adenovirus/ultraestrutura , Proteínas E3 de Adenovirus/química , Sequência de Aminoácidos , Animais , Apresentação de Antígeno/imunologia , Sequência Conservada , Cristalografia por Raios X , Antígeno HLA-A2/química , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/ultraestrutura , Humanos , Conformação Proteica , Especificidade da Espécie
7.
Nat Struct Mol Biol ; 19(11): 1176-81, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23042604

RESUMO

E3-19K binds to and retains MHC class I molecules in the endoplasmic reticulum, suppressing anti-adenovirus activities of T cells. We determined the structure of the adenovirus serotype 2 (Ad2, species C) E3-19K-HLA-A2 complex to 1.95-Å resolution. Ad2 E3-19K binds to the N terminus of the HLA-A2 groove, contacting the α1, α2 and α3 domains and ß(2)m. Ad2 E3-19K has a unique structure comprising a large N-terminal domain, formed by two partially overlapping ß-sheets arranged in a V shape, and a C-terminal α-helix and tail. The structure reveals determinants in E3-19K and HLA-A2 that are important for complex formation; conservation of some of these determinants in E3-19K proteins of different species and MHC I molecules of different loci suggests a universal binding mode for all E3-19K proteins. Our structure is important for understanding the immunomodulatory function of E3-19K.


Assuntos
Proteínas E3 de Adenovirus/química , Proteínas E3 de Adenovirus/imunologia , Antígeno HLA-A2/química , Imunomodulação/imunologia , Modelos Moleculares , Conformação Proteica , Linfócitos T/imunologia , Proteínas E3 de Adenovirus/metabolismo , Clonagem Molecular , Cristalografia , Retículo Endoplasmático/metabolismo , Escherichia coli , Antígeno HLA-A2/metabolismo , Humanos , Imunomodulação/genética , Ligação Proteica
8.
J Biol Chem ; 286(20): 17631-9, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454588

RESUMO

Our understanding of the mechanism by which the E3-19K protein from adenovirus (Ad) targets major histocompatibility complex (MHC) class I molecules for retention in the endoplasmic reticulum is derived largely from studies of Ad serotype 2 (subgroup C). It is not well understood to what extent observations on the Ad2 E3-19K/MHC I association can be generalized to E3-19K proteins of other serotypes and subgroups. The low levels of amino acid sequence homology between E3-19K proteins suggest that these proteins are likely to manifest distinct MHC I binding properties. This information is important as the E3-19K/MHC I interaction is thought to play a critical role in enabling Ads to cause persistent infections. Here, we characterized interaction between E3-19K proteins of serotypes 7 and 35 (subgroup B), 5 (subgroup C), 37 (subgroup D), and 4 (subgroup E) and a panel of HLA-A, -B, and -C molecules using native gel, surface plasmon resonance (SPR), and flow cytometry. Results show that all E3-19K proteins exhibited allele specificity toward HLA-A and -B molecules; this was less evident for Ad37 E3-19K. The allele specificity for HLA-A molecules was remarkably similar for different serotypes of subgroup B as well as subgroup C. Interestingly, all E3-19K proteins characterized also exhibited MHC I locus specificity. Importantly, we show that Lys(91) in the conserved region of Ad2 E3-19K targets the C terminus of the α2-helix (MHC residue 177) on MHC class I molecules. From our data, we propose a model of interaction between E3-19K and MHC class I molecules.


Assuntos
Adenoviridae/imunologia , Proteínas E3 de Adenovirus/imunologia , Proteínas Precoces de Adenovirus/imunologia , Antígenos HLA-A/imunologia , Antígenos HLA-B/imunologia , Adenoviridae/genética , Adenoviridae/metabolismo , Proteínas E3 de Adenovirus/genética , Proteínas E3 de Adenovirus/metabolismo , Proteínas Precoces de Adenovirus/genética , Proteínas Precoces de Adenovirus/metabolismo , Linhagem Celular , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo , Antígenos HLA-B/genética , Antígenos HLA-B/metabolismo , Humanos , Estrutura Secundária de Proteína , Especificidade da Espécie
9.
Artigo em Inglês | MEDLINE | ID: mdl-18607105

RESUMO

Oxylipins are oxygenated derivatives of fatty acids and pivotal signaling molecules in plants and animals. Allene oxide synthase (AOS) is a key cytochrome P450 CYP74 enzyme involved in the biosynthesis of plant oxylipin jasmonates to convert 13(S)-hydroperoxide to allene oxide. Guayule (Parthenium argentatum) AOS, CYP74A2, was expressed in Escherichia coli. Protein was purified using affinity chromatography and size exclusion chromatography, and then crystallized. Two different crystal forms were obtained from 0.2 M (NH(4))H(2)PO(4), 50% MPD, 0.1 M Tris, pH 8.5 at 277 K using the hanging-drop vapor-diffusion method. Preliminary X-ray analysis was carried out, and the crystals were found to belong to the tetragonal space group I422 with cell parameters a = b = 126.5, c = 163.9 A, and the monoclinic space group C2 with cell parameters a = 336.5, b = 184.2, c = 159.0 A, beta = 118.6 degrees . Diffraction data were collected to 2.4 A resolution from a tetragonal form of crystal using a home X-ray source.


Assuntos
Asteraceae , Sistema Enzimático do Citocromo P-450/química , Oxirredutases Intramoleculares/química , Proteínas de Plantas/química , Difração de Raios X , Cristalização/métodos , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Oxirredutases Intramoleculares/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proteínas de Plantas/isolamento & purificação
10.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 7): 1195-7, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12077441

RESUMO

A major goal of vaccine research for the prevention of AIDS is to determine the immune correlates of protection against HIV-1 infection. In this context, it is of interest to understand how HLA-A*1101, a significantly more prevalent class I allele in a cohort of highly HIV-1-exposed persistently seronegative individuals, functions in relation to protective immunity to HIV-1. Towards this goal, a soluble recombinant HLA-A*1101 molecule has been expressed and used to assemble a complex with beta2-microglobulin and a Nef decapeptide. The HLA-A*1101/beta2m/Nef complex was crystallized by the hanging-drop vapor-diffusion method. The crystal formed in the monoclinic space group P2(1), with unit-cell parameters a = 77.2, b = 88.5, c = 64.8 A, beta = 90.1 degrees, and contains two molecules in the asymmetric unit. A data set to 2.2 A resolution was collected and structure determination by molecular replacement is currently in progress. Understanding the three-dimensional structure of the HLA-A*1101/beta2m/Nef complex may provide insight into the functional role of this class I allele in relation to protective immunity to HIV-1.


Assuntos
Cristalografia por Raios X/métodos , HIV-1/química , Antígenos HLA-A/química , Peptídeos/química , Alelos , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , DNA Complementar/metabolismo , Humanos , Ligação Proteica , Proteínas Recombinantes/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA