Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
1.
Pediatr Surg Int ; 40(1): 115, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696138

RESUMO

OBJECTIVE: This study aimed to evaluate the role of receptor-interacting protein kinase-3 (RIPK3) in the diagnosis, estimation of disease severity, and prognosis of premature infants with necrotising enterocolitis (NEC). METHODS: RIPK3, lactic acid (LA), and C-reactive protein (CRP) levels were measured in the peripheral blood of 108 premature infants between 2019 and 2023, including 24 with stage II NEC, 18 with stage III NEC and 66 controls. Diagnostic values of the indicators for NEC were evaluated via receiver operating characteristic (ROC) curve analysis. RESULTS: Plasma RIPK3 and LA levels upon NEC suspicion in neonates with stage III NEC were 32.37 ± 16.20 ng/mL. The ROC curve for the combination of RIPK3, LA, CRP for NEC diagnosis were 0.925. The time to full enteral feeding (FEFt) after recovery from NEC was different between two expression groups of plasma RIPK3 (RIPK3 < 20.06 ng/mL and RIPK3 ≥ 20.06 ng/mL). CONCLUSION: Plasma RIPK3 can be used as a promising marker for the diagnosis and estimation of disease severity of premature infants with NEC and for the guidance on proper feeding strategies after recovery from NEC.


Assuntos
Biomarcadores , Enterocolite Necrosante , Recém-Nascido Prematuro , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Enterocolite Necrosante/sangue , Enterocolite Necrosante/diagnóstico , Recém-Nascido , Proteína Serina-Treonina Quinases de Interação com Receptores/sangue , Biomarcadores/sangue , Masculino , Feminino , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise , Prognóstico , Curva ROC , Índice de Gravidade de Doença , Doenças do Prematuro/sangue , Doenças do Prematuro/diagnóstico , Estudos de Casos e Controles , Ácido Láctico/sangue
2.
PeerJ ; 12: e17370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737737

RESUMO

Cysteine-rich receptor-like kinases (CRKs) play many important roles during plant development, including defense responses under both biotic and abiotic stress, reactive oxygen species (ROS) homeostasis, callose deposition and programmed cell death (PCD). However, there are few studies on the involvement of the CRK family in male sterility due to heat stress in wheat (Triticum aestivum L.). In this study, a genome-wide characterization of the CRK family was performed to investigate the structural and functional attributes of the wheat CRKs in anther sterility caused by heat stress. A total of 95 CRK genes were unevenly distributed on 18 chromosomes, with the most genes distributed on chromosome 2B. Paralogous homologous genes with Ka/Ks ratios less than 1 may have undergone strong purifying selection during evolution and are more functionally conserved. The collinearity analysis results of CRK genes showed that wheat and Arabidopsis (A. thaliana), foxtail millet, Brachypodium distachyon (B. distachyon), and rice have three, 12, 15, and 11 pairs of orthologous genes, respectively. In addition, the results of the network interactions of genes and miRNAs showed that five miRNAs were in the hub of the interactions map, namely tae-miR9657b-5p, tae-miR9780, tae-miR9676-5p, tae-miR164, and tae-miR531. Furthermore, qRT-PCR validation of the six TaCRK genes showed that they play key roles in the development of the mononuclear stage anthers, as all six genes were expressed at highly significant levels in heat-stressed male sterile mononuclear stage anthers compared to normal anthers. We hypothesized that the TaCRK gene is significant in the process of high-temperature-induced sterility in wheat based on the combination of anther phenotypes, paraffin sections, and qRT-PCR data. These results improve our understanding of their relationship.


Assuntos
Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas , Triticum , Triticum/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética , Temperatura Alta/efeitos adversos , Família Multigênica , Cromossomos de Plantas/genética , Resposta ao Choque Térmico/genética , Perfilação da Expressão Gênica
3.
Langmuir ; 40(16): 8352-8364, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38587627

RESUMO

A high yield of environmentally friendly N,S-codoped (N,S-CDs) and N-doping carbon points (N-CDs) carbon dots was achieved through a biochemical oxidation reaction at room temperature in this study. Acetaldehyde, sodium hydroxide, benzotriazole (BTA), and 2-mercaptobenzimidazole (MB) with a similar structure were used as raw materials. The microstructure and properties of the corrosion inhibitor for Q235 steel were evaluated by various experiments. The results demonstrated enhanced corrosion inhibition rates of the N,S-CDs compared to the N-CDs using electrochemical tests (93.83% vs 77.65%) and weight loss experiments (96.35% vs 91.65%) at 50 mg/L, respectively, compared to the blank material, indicating that N,S codoping can significantly improve the corrosion inhibition effect of carbon dots. The significant improvements were attributed to the formation of dense adsorption films and the hydrophobic properties of N and S-CDs nanoparticles on the steel surface, leading to an effective barrier against corrosion. The findings from this study provide important experimental data for potential industrial applications and hold important practical value in the field of pickling corrosion inhibitors.

4.
J Clin Ultrasound ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561934

RESUMO

OBJECTIVE: To analyze the value of prenatal ultrasound and molecular testing in diagnosing fetal skeletal dysplasia (SD). METHODS: Clinical data, prenatal ultrasound data, and molecular results of pregnant women with fetal SD were collected in the ultrasound department of our clinic from May 2019 to December 2021. RESULTS: A total of 40 pregnant women with fetal SD were included, with 82.5% exhibiting short limb deformity, followed by 25.0% with central nervous system malformations, 17.50% with facial malformations, 15% with cardiac malformations, and 12.5% with urinary system malformations. The genetic testing positive rate was 70.0% (28/40), with 92.8% (26/28) being single-gene disorders due to mutations in FGFR3, COL1A1, COL1A2, EVC2, FLNB, LBR, and TRPV4 genes. The most common SD subtypes were osteogenesis imperfecta (OI), thanatophoric dysplasia (TD), and achondroplasia (ACH). The gestational age (GA) at initial diagnosis for TD, OI, and ACH was 16.6, 20.9, and 28.3 weeks, respectively (p < 0.05), with no significant difference in femoral shortening between the three groups (p > 0.05). Of the OI cases, 5 out of 12 had a family history. CONCLUSION: Short limb deformity is the most prevalent phenotype of SD. When fetal SD is suspected, detailed ultrasound screening should be conducted, combined with GA at initial diagnosis, family history, and molecular evidence, to facilitate more accurate diagnosis and enhance prenatal counseling and perinatal management.

5.
Neural Regen Res ; 19(12): 2760-2772, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595293

RESUMO

JOURNAL/nrgr/04.03/01300535-202412000-00031/figure1/v/2024-04-08T165401Z/r/image-tiff Neonatal hypoxic-ischemic brain injury is the main cause of hypoxic-ischemic encephalopathy and cerebral palsy. Currently, there are few effective clinical treatments for neonatal hypoxic-ischemic brain injury. Here, we investigated the neuroprotective and molecular mechanisms of exogenous nicotinamide adenine dinucleotide, which can protect against hypoxic injury in adulthood, in a mouse model of neonatal hypoxic-ischemic brain injury. In this study, nicotinamide adenine dinucleotide (5 mg/kg) was intraperitoneally administered 30 minutes before surgery and every 24 hours thereafter. The results showed that nicotinamide adenine dinucleotide treatment improved body weight, brain structure, adenosine triphosphate levels, oxidative damage, neurobehavioral test outcomes, and seizure threshold in experimental mice. Tandem mass tag proteomics revealed that numerous proteins were altered after nicotinamide adenine dinucleotide treatment in hypoxic-ischemic brain injury mice. Parallel reaction monitoring and western blotting confirmed changes in the expression levels of proteins including serine (or cysteine) peptidase inhibitor, clade A, member 3N, fibronectin 1, 5'-nucleotidase, cytosolic IA, microtubule associated protein 2, and complexin 2. Proteomics analyses showed that nicotinamide adenine dinucleotide ameliorated hypoxic-ischemic injury through inflammation-related signaling pathways (e.g., nuclear factor-kappa B, mitogen-activated protein kinase, and phosphatidylinositol 3 kinase/protein kinase B). These findings suggest that nicotinamide adenine dinucleotide treatment can improve neurobehavioral phenotypes in hypoxic-ischemic brain injury mice through inflammation-related pathways.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38504588

RESUMO

OBJECTIVE: This study focused on investigating the mechanism in which the KDM5D/E2F1/TNNC1 axis affected hepatocellular carcinoma (HCC) development. METHODS: At first, we determined HCC cell proliferation, migration, invasion, and apoptosis, as well as SOD activity, MDA content, and ROS level. ChIP assay was subsequently conducted to examine H3K4me3 modification in the E2F1 promoter region and the binding of E2F1 to the TNNC1 promoter region after KDM5D overexpression. Meanwhile, we performed western blot for testing KDM5D, H3K4me3, and E2F1 expression after KDM5D overexpression in Huh-7 cells. The binding of transcription factor E2F1 to the TNNC1 promoter region was assessed by dual luciferase reporter gene assay. We further observed the tumor growth ability in nude mice transplanted tumor models. RESULTS: Overexpressed KDM5D suppressed HCC proliferation, migration, and invasion, promoted the apoptosis, suppressed SOD activity, elevated MDA content and ROS level, and promoted ferroptosis. KDM5D suppressed H3K4me3 modification in the E2F1 promoter region and suppressed E2F1 expression in HCC cells. Reduced KDM5D, H3K4me3, and E2F1 expression was found after KDM5D overexpression in Huh-7 cells. Overexpressing E2F1 reversed the inhibitory effects of KDM5D on HCC cell proliferative, migratory, and invasive behaviors. KDM5D repressed TNNC1 transcription by inhibiting E2F1 binding to the TNNC1 promoter. In vivo KDM5D overexpression inhibited HCC development via the E2F1/TNNC1 axis. CONCLUSION: KDM5D inhibits E2F1 expression by suppressing H3K4me3 modification in the E2F1 promoter region, which in turn suppresses the binding of E2F1 to the TNNC1 promoter region, thus leading to the inhibition of HCC development.

7.
Orthop Surg ; 16(4): 811-820, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38439564

RESUMO

Fracture healing is a complex staged repair process in which the mechanical environment plays a key role. Bone tissue is very sensitive to mechanical stress stimuli, and the literature suggests that appropriate stress can promote fracture healing by altering cellular function. However, fracture healing is a coupled process involving multiple cell types that balance and limit each other to ensure proper fracture healing. The main cells that function during different stages of fracture healing are different, and the types and molecular mechanisms of stress required are also different. Most previous studies have used a single mechanical stimulus on individual mechanosensitive cells, and there is no relatively uniform standard for the size and frequency of the mechanical stress. Analyzing the mechanisms underlying the effects of mechanical stimulation on the metabolic regulation of signaling pathways in cells such as in bone marrow mesenchymal stem cells (BMSCs), osteoblasts, chondrocytes, and osteoclasts is currently a challenging research hotspot. Grasping how stress affects the function of different cells at the molecular biology level can contribute to the refined management of fracture healing. Therefore, in this review, we summarize the relevant literature and describe the effects of mechanical stress on cells associated with fracture healing, and their possible signaling pathways, for the treatment of fractures and the further development of regenerative medicine.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Humanos , Estresse Mecânico , Osso e Ossos , Osteoclastos
8.
BMJ Open ; 14(3): e078320, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453197

RESUMO

OBJECTIVES: The role of the Controlling Nutritional Status (CONUT) scores in predicting the prognosis of lymphoma cases has been extensively explored, with no consistent results. The present meta-analysis focused on accurately evaluating whether CONUT could be used to predict the prognosis of lymphoma cases and its clinicopathological value. DESIGN: The present meta-analysis was reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The prognostic significance of CONUT to overall survival (OS) and progression-free survival (PFS) in lymphoma was estimated by calculating pooled HRs with 95% CIs. The relationship between CONUT and clinicopathological characteristics was measured based on pooled ORs with 95% CIs. DATA SOURCES: PubMed, Web of Science, Embase and Cochrane Library databases were comprehensively searched from inception through 24 March 2023. STATISTICAL METHODS: Either a random-effects model or a fixed-effects model was selected depending on the level of heterogeneity among the included studies. RESULTS: This meta-analysis enrolled seven articles, containing 2060 patients with lymphoma. According to the pooled analysis, a higher CONUT score significantly predicted poor OS (HR=1.94, 95% CI 1.46 to 2.57, p<0.001) as well as poorer PFS (HR=1.51, 95% CI 1.04 to 2.20, p=0.031). Furthermore, according to the combined analysis, a higher CONUT score was significantly associated with Ann Arbor stages III-IV (OR=3.75, 95% CI 2.96 to 4.75, p<0.001), an Eastern Cooperative Oncology Group performance status of 2-4 (OR=5.14, 95% CI 3.97 to 6.65, p<0.001), high-intermediate/high National Comprehensive Cancer Network International Prognostic Index (OR=8.05, 95% CI 5.11 to 12.66, p<0.001), B symptoms (OR=4.97, 95% CI 2.89 to 8.52, p<0.001), extranodal disease (OR=3.25, 95% CI 2.24 to 4.70, p<0.001), bone marrow involvement (OR=4.86, 95% CI 3.25 to 7.27, p<0.001) and elevated lactate dehydrogenase levels (OR=3.21, 95% CI 2.37 to 4.34, p<0.001). CONCLUSIONS: According to our results, higher CONUT scores were significantly associated with poor OS and PFS in lymphoma.


Assuntos
Linfoma , Estado Nutricional , Humanos , Prognóstico , Intervalo Livre de Progressão , Estudos Retrospectivos
9.
Ecotoxicol Environ Saf ; 273: 116102, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382346

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a prevalent chronic microvascular complication of diabetes and the leading cause of end-stage renal disease (ESRD). Understanding the progressive etiology of DN is critical for the development of effective health policies and interventions. Recent research indicated that polystyrene microplastics (PS-MPs) contaminate our diets and accumulate in various organs, including the liver, kidneys, and muscles. METHODS: In this study, ten-week-old db/db mice and db/m mice were fed. Besides, db/db mice were divided into two groups: PS-MPs group (oral administration of 0.5 µm PS-MPs) and an H2O group, and they were fed for three months. A type II diabetes model was established using db/db mice to investigate the effects of PS-MPs on body weight, blood glucose level, renal function, and renal fibrosis. RESULTS: The results demonstrated that PS-MPs significantly exacerbated various biochemical indicators of renal tissue damage, including fasting blood glucose, serum creatinine, blood urea nitrogen, and blood uric acid. Additionally, PS-MPs worsened the pathological alterations and degree of fibrosis in renal tissue. An increased oxidative stress state and elevated levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and monocyte chemoattractant protein-1 (MCP-1) were identified. Furthermore, PS-MPs significantly enhanced renal fibrosis by inhibiting the transition from epithelial cells to mesenchymal cells, specifically through the inhibition of the TGF-ß/Smad signaling pathway. The expression levels of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1, and cleaved Caspase-1, which are inflammasome proteins, were significantly elevated in the PS-MPs group. CONCLUSION: The findings suggested that PS-MPs could aggravate kidney injury and renal fibrosis in db/db mice by promoting NLRP3/Caspase-1 and TGF-ß1/Smads signaling pathways. These findings had implications for elucidating the role of PS-MPs in DN progression, underscoring the necessity for additional research and public health interventions.

10.
Crit Rev Immunol ; 44(2): 15-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305333

RESUMO

Sepsis is a life-threatening organ dysfunction due to dysregulated host response to infection, accompanied by a high rate of mortality worldwide. During sepsis progression, toll-like receptors (TLRs) play essential roles in the aberrant inflammatory response that contributes to sepsis-related mortality. Here, we demonstrated a critical role of TLR9 in the progression of sepsis. A septic mouse model was established by cecal ligation and puncture (CLP), then administered with lentivirus encoding si-TLR9/LY294002. TLR9 protein expression and p65 nuclear translocation level/TLR9 protein positive expression/interaction between TLR9 and myeloid differentiation primary response protein 88 (MyD88) in the cecal tissues were examined by Western blot/immunohistochemistry/co-immunoprecipitation assays. Serum levels of pro-inflammatory factors [e.g., interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α)] as well as bacterial contents in the liver/spleen/mesenteric lymph nodes (MLN) were measured by ELISA and bacterial mobility assay. TLR9 expression was augmented in the cecal tissues, TLR9 and MyD88 interaction was enhanced, nuclear p65 protein level was increased, cytoplasmic p65 protein level was decreased, and the nuclear factor kappa B (NF-κB) pathway was activated in CLP-induced septic mice, while TLR9 knockout protected against CLP-induced sepsis via the MyD88/NF-κB pathway inactivation. Briefly, TLR9 inhibition-mediated protection against CLP-induced sepsis was associated with a reduction in pro-inflammatory cytokine release and a promotion of bacterial clearance via a mechanism involving the MyD88/NF-κB pathway inactivation.


Assuntos
NF-kappa B , Sepse , Receptor Toll-Like 9 , Animais , Camundongos , Citocinas/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Sepse/genética , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Anesth Analg ; 138(5): 1031-1042, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335150

RESUMO

BACKGROUND: Postoperative delirium (POD) is a common form of postoperative brain dysfunction, especially in the elderly. However, its risk factors remain largely to be determined. This study aimed to investigate whether (1) preoperative diabetes is associated with POD after elective orthopedic surgery and (2) intraoperative frontal alpha power is a mediator of the association between preoperative diabetes and POD. METHODS: This was a prospective matched cohort study of patients aged 60 years or more, with a preoperative diabetes who underwent elective orthopedic surgery. Nondiabetic patients were matched 1:1 to diabetic patients in terms of age, sex, and type of surgery. Primary outcome was occurrence of POD, assessed using the 3-minute Diagnostic Confusion Assessment Method (3D-CAM) once daily from 6 pm to 8 pm during the postoperative days 1-7 or until discharge. Secondary outcome was the severity of POD which was assessed for all participants using the short form of the CAM-Severity. Frontal electroencephalogram (EEG) was recorded starting before induction of anesthesia and lasting until discharge from the operating room. Intraoperative alpha power was calculated using multitaper spectral analyses. Mediation analysis was used to estimate the proportion of the association between preoperative diabetes and POD that could be explained by intraoperative alpha power. RESULTS: A total of 138 pairs of eligible patients successfully matched 1:1. After enrollment, 6 patients in the diabetes group and 4 patients in the nondiabetes group were excluded due to unavailability of raw EEG data. The final analysis included 132 participants with preoperative diabetes and 134 participants without preoperative diabetes, with a median age of 68 years and 72.6% of patients were female. The incidence of POD was 16.7% (22/132) in patients with preoperative diabetes vs 6.0% (8/134) in patients without preoperative diabetes. Preoperative diabetes was associated with increased odds of POD after adjustment of age, sex, body mass index, education level, hypertension, arrhythmia, coronary heart disease, and history of stroke (odds ratio, 3.2; 95% confidence interval [CI], 1.4-8.0; P = .009). The intraoperative alpha power accounted for an estimated 20% (95% CI, 2.6-60%; P = .021) of the association between diabetes and POD. CONCLUSIONS: This study suggests that preoperative diabetes is associated with an increased risk of POD in older patients undergoing major orthopedic surgery, and that low intraoperative alpha power partially mediates such association.


Assuntos
Delírio , Diabetes Mellitus , Delírio do Despertar , Procedimentos Ortopédicos , Idoso , Humanos , Feminino , Masculino , Delírio do Despertar/diagnóstico , Delírio do Despertar/epidemiologia , Delírio do Despertar/etiologia , Estudos de Coortes , Estudos Prospectivos , Delírio/diagnóstico , Delírio/etiologia , Delírio/epidemiologia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Procedimentos Ortopédicos/efeitos adversos , Diabetes Mellitus/diagnóstico , Fatores de Risco
12.
Artigo em Inglês | MEDLINE | ID: mdl-38299557

RESUMO

Aims: This research was aimed at investigating the effects of hypoxia inducible factor-1 alpha (HIF-1α)-mediated DNA methylation enzymes (ten-eleven translocase-2 [TET2] and DNA methyltransferase-3a [DNMT3a]) under hypoxic conditions on S100A6 transcription, thereby promoting the growth and metastasis of lung cancer cells. Methods: The expression of HIF-1α or S100A6 in lung cancer cells was interfered with under normoxic and hypoxic conditions, and the cell proliferative, migratory, and invasive properties were assessed. The mechanism of HIF-1α-regulated TET2 and DNMT3 effects on S100A6 transcription under hypoxic conditions was further investigated. Results: Functionally, S100A6 over-expression promoted lung cancer cell proliferation and metastasis. S100A6 over-expression reversed the inhibitory effects of HIF-1α interference on the proliferation and metastasis of lung cancer cells. S100A6 was induced to express in an HIF-1α-dependent manner under hypoxic conditions, and silencing S100A6 or HIF-1α suppressed lung cancer cell proliferation and metastasis under hypoxic conditions. Further, The Cancer Genome Atlas-lung adenocarcinoma database analysis revealed that S100A6 mRNA levels had a negative correlation with methylation levels. Mechanistically, CpG hypomethylation status in the S100A6 promoter hypoxia response element had an association with HIF-1α induction. TET2 was enriched in S100A6 promoter region of lung cancer cells under hypoxic conditions, whereas DNMT3a enrichment was reduced in S100A6 promoter region. HIF-1α-mediated S100A6 activation was linked to DNMT3a-associated epigenetic inactivation and TET2 activation. Innovation: The activation of HIF-1α-mediated DNA methylation enzymes under hypoxic conditions regulated S100A6 transcription, thereby promoting lung cancer cell growth and metastasis. Conclusion: In lung cancer progression, hypoxia-induced factor HIF-1α combined with DNA methylation modifications co-regulates S100A6 transcriptional activation and promotes lung cancer cell growth and metastasis.

13.
Future Oncol ; 20(3): 121-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38353107

RESUMO

Immune checkpoint inhibitors (ICIs) plus chemotherapy has demonstrated efficacy in resectable non-small-cell lung cancer (NSCLC), yet the optimal period of neoadjuvant immunochemotherapy is undetermined. In a phase II study (neoSCORE, NCT04459611), more neoadjuvant therapy cycles appeared to provide greater pathological remission, and patients with squamous NSCLC had a better major pathological response rate than those with nonsquamous NSCLC. Sintilimab, a monoclonal anti-PD-1 antibody, has shown encouraging antitumor activity and safety in multiple cancers, including NSCLC. Here, we describe the study design of neoSCORE II (NCT05429463), a randomized, open-label, multicenter phase III trial comparing the efficacy and safety of three cycles with four cycles of neoadjuvant sintilimab plus platinum-based chemotherapy in resectable stage IIA-IIIB squamous NSCLC. Trial registration number: NCT05429463 (ClinicalTrials.gov).


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Terapia Neoadjuvante , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase II como Assunto
14.
PLoS Pathog ; 20(2): e1011953, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315719

RESUMO

Carbonic anhydrase IV (Car4) is a newly identified receptor that allows adeno-associated virus (AAV) 9P31 to cross the blood-brain barrier and achieve efficient infection in the central nervous system (CNS) in mouse models. However, the molecular mechanism by which engineered AAV capsids with 7-mer insertion in the variable region (VR) VIII recognize these novel cellular receptors is unknown. Here we report the cryo-EM structures of AAV9P31 and its complex with Mus musculus Car4 at atomic resolution by utilizing the block-based reconstruction (BBR) method. The structures demonstrated that Car4 binds to the protrusions at 3-fold axes of the capsid. The inserted 7-mer extends into a hydrophobic region near the catalytic center of Car4 to form stable interactions. Mutagenesis studies also identified the key residues in Car4 responsible for the AAV9P31 interaction. These findings provide new insights into the novel receptor recognition mechanism of AAV generated by directed evolution and highlight the application of the BBR method to studying the virus-receptor molecular mechanism.


Assuntos
Anidrase Carbônica IV , Dependovirus , Animais , Camundongos , Dependovirus/genética , Anidrase Carbônica IV/análise , Anidrase Carbônica IV/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Barreira Hematoencefálica/metabolismo , Vetores Genéticos
15.
Int J Biol Macromol ; 260(Pt 2): 129682, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266851

RESUMO

Impaired macrophage polarization or the high levels of reactive oxygen species (ROS) produced by high glucose conditions and bacterial infection are the primary factors that make healing diabetic wounds difficult. Here, we prepared an OGLP-CMC/SA hydrogel with a double network structure that was synthesized with oxidized Ganoderma lucidum polysaccharide (OGLP), sodium alginate (SA) and carboxymethyl chitosan (CMC) as the matrix. The results showed that the OGLP-CMC/SA hydrogel had good mechanical properties, tissue adhesion, oxidation resistance and biocompatibility. Moreover, the hydrogel could effectively improve the proliferation and migration of fibroblasts, also can enhance antibacterial properties. We found that the OGLP-CMC/SA hydrogel can promote the polarization of M1 macrophages towards the M2 and decrease intracellular ROS levels, effectively reduce the inflammatory response, and promote epidermal growth, the development of skin appendages and collagen deposition in wounds, which hasten diabetic wound healing. Therefore, using this versatile biologically active new hydrogel network constructed with OGLP provides a promising therapeutic strategy for chronic diabetic wound repair.


Assuntos
Diabetes Mellitus , Reishi , Hidrogéis , Espécies Reativas de Oxigênio , Polissacarídeos/farmacologia , Alginatos/farmacologia , Macrófagos , Cicatrização
16.
Discov Oncol ; 15(1): 8, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216781

RESUMO

Glutamate dehydrogenase 1 (GLUD1) is an important enzyme in glutamine metabolism. Previously, we found GLUD1 was down-regulated in tumor tissues of hepatocellular carcinoma (HCC) patients by proteomics study. To explore its role in the progression of HCC, the expressional level of GLUD1 was firstly examined and presented as that both the protein and mRNA levels were down-regulated in tumor tissues compared to the normal liver tissues. GLUD1 overexpression significantly inhibited HCC cells proliferation, migration, invasion and tumor growth both in vitro and in vivo, while GLUD1 knocking-down promoted HCC progression. Metabolomics study of GLUD1 overexpressing and control HCC cells showed that 129 differentially expressed metabolites were identified, which mainly included amino acids, bases, and phospholipids. Moreover, metabolites in mitochondrial oxidative phosphorylation system (OXPHOS) were differentially expressed in GLUD1 overexpressing cells. Mechanistic studies showed that GLUD1 overexpression enhanced mitochondrial respiration activity and reactive oxygen species (ROS) production. Excessive ROS lead to mitochondrial apoptosis that was characterized by increased expression levels of p53, Cytochrome C, Bax, Caspase 3 and decreased expression level of Bcl-2. Furthermore, we found that the p38/JNK MAPK pathway was activated in GLUD1 overexpressing cells. N-acetylcysteine (NAC) treatment eliminated cellular ROS and blocked p38/JNK MAPK pathway activation, as well as cell apoptosis induced by GLUD1 overexpression. Taken together, our findings suggest that GLUD1 inhibits HCC progression through regulating cellular metabolism and oxidative stress state, and provide that ROS generation and p38/JNK MAPK pathway activation as promising methods for HCC treatment.

17.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1687-1700, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37712971

RESUMO

Fibrotic kidney injury from hepatocarcinogenesis seriously impacts treatment effect. Astragaloside IV (AS-IV), an extract of Astragalus membranaceus, has several pharmacological activities, which are useful in the treatment of edema and fibrosis. Nrf2/HO-1 is a key antioxidant stress pathway and help treatment of kidney injury. Smad3 phosphorylation is implicated in hepatocarcinogenesis. Our previous study clarified that Smad3 is differentially regulated by different phosphorylated forms of Smad3 on hepatocarcinogenesis. Therefore, we investigated the contribution of AS-IV on the therapy of kidney fibrosis from hepatocarcinogenesis. And the focus was on whether the phosphorylation of Smad3 and the regulation of Nrf2/HO-1 pathway were involved during AS-IV therapy and whether there is an effect of Nrf2 knockout on the phosphorylation of Smad3. We performed TGF-ß1 stimulation on HK-2 cells and intervened with AS-IV. Furtherly, we investigated renal injury of AS-IV on Nrf2 knockout mice during hepatocarcinogenesis and its mechanism of action. On the one hand, in vitro results showed that AS-IV reduced the ROS and α-SMA expression of HK-2 by promoting the expression pSmad3C/p21 of and Nrf2/HO-1 and suppressed the expression of pSmad3L/PAI-1. On the other hand, the in vivo results of histopathological features, serological biomarkers, and oxidative damage indicators showed that Nrf2 knockout aggravated renal injury. Besides, Nrf2 deletion decreased the nephroprotective effect of AS-IV by suppressing the pSmad3C/p21 pathway and promoting the pSmad3L/PAI-1 pathway. The experimental results were as we suspected. And we identify for the first time that Nrf2 deficiency increases renal fibrosis from hepatocarcinogenesis and attenuates the therapeutic effects of AS-IV via regulating pSmad3C/3L signal pathway.


Assuntos
Nefropatias , Neoplasias Hepáticas , Saponinas , Triterpenos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fibrose , Rim/patologia , Nefropatias/tratamento farmacológico , Nefropatias/genética , Nefropatias/metabolismo
18.
J Plant Physiol ; 292: 154160, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147808

RESUMO

The response regulator (RR) gene family play crucial roles in cytokinin signal transduction, plant development, and resistance to abiotic stress. However, there are no reports on the identification and functional characterization of RR genes in melon. In this study, a total of 18 CmRRs were identified and classified into type A, type B, and clock PRRs, based on phylogenetic analysis. Most of the CmRRs displayed tissue-specific expression patterns, and some were induced by cold stress according to two RNA-seq datasets. The expression patterns of CmRR2/6/11/15 and CmPRR2/3 under cold treatment were confirmed by qRT-PCR. Subcellular localization assays indicated that CmRR6 and CmPRR3 were primarily localized in the nucleus and chloroplast. Furthermore, when either CmRR6 or CmPRR3 were silenced using tobacco ringspot virus (TRSV), the cold tolerance of the virus-induced gene silencing (VIGS) melon plants were significantly enhanced, as evidenced by measurements of chlorophyll fluorescence, ion leakage, reactive oxygen, proline, and malondialdehyde levels. Additionally, the expression levels of CmCBF1, CmCBF2, and CmCBF3 were significantly increased in CmRR6-silenced and CmPRR3-silenced plants under cold treatment. Our findings suggest that CmRRs contribute to cold stress responses and provide new insights for further pursuing the molecular mechanisms underlying CmRRs-mediated cold tolerance in melon.


Assuntos
Resposta ao Choque Frio , Cucumis melo , Resposta ao Choque Frio/genética , Cucumis melo/genética , Cucumis melo/metabolismo , Filogenia , Genoma de Planta , Genes Reguladores , Regulação da Expressão Gênica de Plantas
20.
Nat Commun ; 14(1): 7264, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945658

RESUMO

Non-retroviral endogenous viral elements (nrEVEs) are widely dispersed throughout the genomes of eukaryotes. Although nrEVEs are known to be involved in host antiviral immunity, it remains an open question whether they can be domesticated as functional proteins to serve cellular innovations in arthropods. In this study, we found that endogenous toti-like viral elements (ToEVEs) are ubiquitously integrated into the genomes of three planthopper species, with highly variable distributions and polymorphism levels in planthopper populations. Three ToEVEs display exon‒intron structures and active transcription, suggesting that they might have been domesticated by planthoppers. CRISPR/Cas9 experiments revealed that one ToEVE in Nilaparvata lugens, NlToEVE14, has been co-opted by its host and plays essential roles in planthopper development and fecundity. Large-scale analysis of ToEVEs in arthropod genomes indicated that the number of arthropod nrEVEs is currently underestimated and that they may contribute to the functional diversity of arthropod genes.


Assuntos
Artrópodes , Hemípteros , Animais , Artrópodes/genética , Hemípteros/genética , Retroviridae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA