Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
2.
Ecotoxicol Environ Saf ; 276: 116302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608381

RESUMO

Benzene is a known contributor to human leukaemia through its toxic effects on bone marrow cells, and epigenetic modification is believed to be a potential mechanism underlying benzene pathogenesis. However, the specific roles of N6-methyladenosine (m6A), a newly discovered RNA post-transcriptional modification, in benzene-induced hematotoxicity remain unclear. In this study, we identified self-renewing malignant proliferating cells in the bone marrow of benzene-exposed mice through in vivo bone marrow transplantation experiments and Competitive Repopulation Assay. Subsequent analysis using whole transcriptome sequencing and RNA m6A methylation sequencing revealed a significant upregulation of RNA m6A modification levels in the benzene-exposed group. Moreover, RNA methyltransferase METTL14, known as a pivotal player in m6A modification, was found to be aberrantly overexpressed in Lin-Sca-1+c-Kit+ (LSK) cells of benzene-exposed mice. Further analysis based on the GEO database showed a positive correlation between the expression of METTL14, mTOR, and GFI and benzene exposure dose. In vitro cellular experiments, employing experiments such as western blot, q-PCR, m6A RIP, and CLIP, validated the regulatory role of METTL14 on mTOR and GFI1. Mechanistically, continuous damage inflicted by benzene exposure on bone marrow cells led to the overexpression of METTL14 in LSK cells, which, in turn, increased m6A modification on the target genes' (mTOR and GFI1) RNA. This upregulation of target gene expression activated signalling pathways such as mTOR-AKT, ultimately resulting in malignant proliferation of bone marrow cells. In conclusion, this study offers insights into potential early targets for benzene-induced haematologic malignant diseases and provides novel perspectives for more targeted preventive and therapeutic strategies.


Assuntos
Adenosina/análogos & derivados , Benzeno , Metiltransferases , Benzeno/toxicidade , Animais , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Células Mieloides/efeitos dos fármacos , Células Mieloides/patologia , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Masculino
3.
Polymers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337280

RESUMO

In this study, gold nanoparticles (AuNPs) were synthesized in situ using chitin nanogels (CNGs) as templates to prepare composites (CNGs@AuNPs) with good photothermal properties, wherein their drug release properties in response to stimulation by near-infrared (NIR) light were investigated. AuNPs with particle sizes ranging from 2.5 nm to 90 nm were prepared by varying the reaction temperature and chloroauric acid concentration. The photothermal effect of different materials was probed by near-infrared light. Under 1 mg/mL of chloroauric acid at 120 °C, the prepared CNGs@AuNPs could increase the temperature by 32 °C within 10 min at a power of 2 W/cm2. The Adriamycin hydrochloride (DOX) was loaded into the CNGs@AuNPs to investigate their release behaviors under different pH values, temperatures, and near-infrared light stimulations. The results showed that CNGs@AuNPs were pH- and temperature-responsive, suggesting that low pH and high temperature could promote drug release. In addition, NIR light stimulation accelerated the drug release. Cellular experiments confirmed the synergistic effect of DOX-loaded CNGs@AuNPs on chemotherapy and photothermal therapy under NIR radiation.

4.
J Med Chem ; 67(2): 1262-1313, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38180485

RESUMO

The identification of VHL-binding proteolysis targeting chimeras (PROTACs) that potently degrade the BRM protein (also known as SMARCA2) in SW1573 cell-based experiments is described. These molecules exhibit between 10- and 100-fold degradation selectivity for BRM over the closely related paralog protein BRG1 (SMARCA4). They also selectively impair the proliferation of the H1944 "BRG1-mutant" NSCLC cell line, which lacks functional BRG1 protein and is thus highly dependent on BRM for growth, relative to the wild-type Calu6 line. In vivo experiments performed with a subset of compounds identified PROTACs that potently and selectively degraded BRM in the Calu6 and/or the HCC2302 BRG1 mutant NSCLC xenograft models and also afforded antitumor efficacy in the latter system. Subsequent PK/PD analysis established a need to achieve strong BRM degradation (>95%) in order to trigger meaningful antitumor activity in vivo. Intratumor quantitation of mRNA associated with two genes whose transcription was controlled by BRM (PLAU and KRT80) also supported this conclusion.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Quimera de Direcionamento de Proteólise , Xenoenxertos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Neoplasias Pulmonares/genética , Fatores de Transcrição/genética , DNA Helicases/genética , Proteínas Nucleares/genética
5.
Eur Arch Otorhinolaryngol ; 281(1): 397-409, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37656222

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC), exhibiting high morbidity and malignancy, is the most common type of oral cancer. The abnormal expression of RNA-binding proteins (RBPs) plays important roles in the occurrence and progression of cancer. The objective of the present study was to establish a prognostic assessment model of RBPs and to evaluate the prognosis of OSCC patients. METHODS: Gene expression data in The Cancer Genome Atlas (TCGA) were analyzed by univariate Cox regression analysis model that established a novel nine RBPs, which were used to build a prognostic risk model. A multivariate Cox proportional regression model and the survival analysis were used to evaluate the prognostic risk model. Moreover, the receive operator curve (ROC) analysis was tested further the efficiency of prognostic risk model based on data from TCGA database and Gene Expression Omnibus (GEO). RESULTS: Nine RBPs' signatures (ACO1, G3BP1, NMD3, RNGTT, ZNF385A, SARS, CARS2, YARS and SMAD6) with prognostic value were identified in OSCC patients. Subsequently, the patients were further categorized into high-risk group and low-risk in the overall survival (OS) and disease-free survival (DFS), and external validation dataset. ROC analysis was significant for both the TCGA and GEO. Moreover, GSEA revealed that patients in the high-risk group significantly enriched in many critical pathways correlated with tumorigenesis than the low, including cell cycle, adheres junctions, oocyte meiosis, spliceosome, ERBB signaling pathway and ubiquitin-mediated proteolysis. CONCLUSIONS: Collectively, we developed and validated a novel robust nine RBPs for OSCC prognosis prediction. The nine RBPs could serve as an independent and reliable prognostic biomarker and guiding clinical therapy for OSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/genética , Prognóstico , DNA Helicases , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/genética
6.
Rapid Commun Mass Spectrom ; 38(2): e9670, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38124173

RESUMO

RATIONALE: Multicellular tumor spheroids (MCTSs) that reconstitute the metabolic characteristics of in vivo tumor tissue may facilitate the discovery of molecular biomarkers and effective anticancer therapies. However, little is known about how cancer cells adapt their metabolic changes in complex three-dimensional (3D) microenvironments. Here, using the two-dimensional (2D) cell model as control, the metabolic phenotypes of glioma U87MG multicellular tumor spheroids were systematically investigated based on static metabolomics and dynamic fluxomics analysis. METHODS: A liquid chromatography-mass spectrometry-based global metabolomics and lipidomics approach was adopted to survey the cellular samples from 2D and 3D culture systems, revealing marked molecular differences between them. Then, by means of metabolomic pathway analysis, the metabolic pathways altered in glioma MCTSs were found using 13 C6 -glucose as a tracer to map the metabolic flux of glycolysis, the tricarboxylic acid (TCA) cycle, de novo nucleotide synthesis, and de novo lipid biosynthesis in the MCTS model. RESULTS: We found nine metabolic pathways as well as glycerolipid, glycerophospholipid and sphingolipid metabolism to be predominantly altered in glioma MCTSs. The reduced nucleotide metabolism, amino acid metabolism and glutathione metabolism indicated an overall lower cellular activity in MCTSs. Through dynamic fluxomics analysis in the MCTS model, we found that cells cultured in MCTSs exhibited increased glycolysis activity and de novo lipid biosynthesis activity, and decreased the TCA cycle and de novo purine nucleotide biosynthesis activity. CONCLUSIONS: Our study highlights specific, altered biochemical pathways in MCTSs, emphasizing dysregulation of energy metabolism and lipid metabolism, and offering novel insight into metabolic events in glioma MCTSs.


Assuntos
Glioma , Espectrometria de Massa com Cromatografia Líquida , Humanos , Metabolômica/métodos , Técnicas de Cultura de Células , Nucleotídeos , Lipídeos , Microambiente Tumoral
7.
Front Oncol ; 13: 1271505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927468

RESUMO

Lipid metabolism reprogramming is one of the most prominent metabolic anomalies in cancer, wherein cancer cells undergo dysregulation of lipid metabolism to acquire adequate energy, cell membrane building blocks, as well as signaling molecules essential for cell proliferation, survival, invasion, and metastasis. These adaptations enable cancer cells to effectively respond to challenges posed by the tumor microenvironment, leading to cancer therapy resistance and poor cancer prognosis. Head and neck cancer, ranking as the seventh most prevalent cancer, exhibits numerous abnormalities in lipid metabolism. Nevertheless, the precise role of lipid metabolic rewiring in head and neck cancer remains unclear. In line with the LIPID MAPS Lipid Classification System and cancer risk factors, the present review delves into the dysregulated molecules and pathways participating in the process of lipid uptake, biosynthesis, transportation, and catabolism. We also present an overview of the latest advancements in understanding alterations in lipid metabolism and how they intersect with the carcinogenesis, development, treatment, and prognosis of head and neck cancer. By shedding light on the significance of metabolic therapy, we aspire to improve the overall prognosis and treatment outcomes of head and neck cancer patients.

8.
Front Endocrinol (Lausanne) ; 14: 1242050, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867519

RESUMO

Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disease in women of childbearing age and can cause metabolic disorder, infertility, and increased anxiety and depression; as a result, it can seriously affect the physical and mental health of fertile women. PCOS is a highly clinically heterogeneous disease with unclear etiology and pathogenesis, which increases the difficulty of treatment. The thyroid gland has complex regulatory effects on metabolism, reproduction, and emotion, and produces hormones that act on almost all cells of the human body. The clinical manifestations of PCOS are similar to some thyroid diseases. Furthermore, some thyroid diseases, such as subclinical hypothyroidism (SCH), not only increase the incidence rate of PCOS, but also exacerbate its associated metabolic abnormalities and reproductive disorders. Interestingly, PCOS also increases the incidence of some thyroid diseases. However, the role of the thyroid in PCOS remains unclear. This review is intended to thoroughly explore the critical role of the thyroid in PCOS by summarizing the comorbidity of PCOS and thyroid diseases and their combined role in metabolic disorders, related metabolic diseases, and reproductive disorders; and by analyzing the potential mechanism through which the thyroid influences the development and progression of PCOS and its symptoms. We hope this review will provide a valuable reference for the role of the thyroid in PCOS.


Assuntos
Hipotireoidismo , Infertilidade , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/epidemiologia , Síndrome do Ovário Policístico/diagnóstico , Hipotireoidismo/epidemiologia , Comorbidade , Infertilidade/epidemiologia
9.
Genes Genomics ; 45(7): 855-866, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37133722

RESUMO

BACKGROUND: Non-voltage-gated sodium channel, also known as the epithelial sodium channel (ENaC), formed by heteromeric complexes consisting of SCNN1A, SCNN1B, and SCNN1G, is responsible for maintaining sodium ion and body fluid homeostasis in epithelial cells. However, no systematic study of SCNN1 family members has been conducted in renal clear cell carcinoma (ccRCC) to date. OBJECTIVE: To investigate the abnormal expression of SCNN1 family in ccRCC and its potential correlation with clinical parameters. METHODS: The transcription and protein expression levels of SCNN1 family members in ccRCC were analyzed based on the TCGA database, and were confirmed by quantitative RT-PCR and immunohistochemical staining assays, respectively. The area under curve (AUC) was used to evaluate the diagnostic value of SCNN1 family members for ccRCC patients. RESULTS: The mRNA and protein expression of SCNN1 family members was significantly downregulated in ccRCC compared with normal kidney tissues, which might be due to DNA hypermethylation in the promoter region. It is worth noting that the AUC of SCNN1A, SCNN1B, and SCNN1G were 0.965, 0.979, and 0.988 based on the TCGA database (p < 0.0001), respectively. The diagnostic value was even higher when combing these three members together (AUC = 0.997, p < 0.0001). Intriguingly, the mRNA level of SCNN1A was significantly lower in females compared with males, while SCNN1B and SCNN1G were increased with the progression of ccRCC and remarkably associated with a worse outcome for patients. CONCLUSION: The aberrantly decrease of SCNN1 family members might serve as valuable biomarkers for the diagnosis of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Masculino , Feminino , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , RNA Mensageiro/metabolismo
10.
Pathol Res Pract ; 245: 154463, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37086631

RESUMO

Hypoxia contributes to the tumorigenesis and metastasis of the tumor. However, the detailed mechanisms underlying hypoxia and kidney renal clear cell carcinoma (KIRC) development and progression remain unclear. Here, we investigated the role of the system HIG1 hypoxia inducible domain family member 1 A (HIGD1A) in the proliferation and metastasis of KIRC and elucidated the underlying molecular mechanisms. The expression of HIGD1A is significantly downregulated in KIRC due to promoter hypermethylation. HIGD1A could serve as a valuable diagnostic biomarker in KIRC. In addition, ectopic overexpression of HIGD1A significantly suppressed the growth and invasive capacity of KIRC cells in vitro under normal glucose conditions. Interestingly, the suppressive efficacy in invasion is much more significant when depleted glucose, but not in proliferation. Furthermore, mRNA expression of HIGD1A positively correlates with CDH1 and EPCAM, while negatively correlated with VIM and SPARC, indicating that HIGD1A impedes invasion of KIRC by regulating epithelial-mesenchymal transition (EMT). Our data suggest that HIGD1A is a potential diagnostic biomarker and tumor suppressor in KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Biomarcadores , Carcinoma de Células Renais/patologia , DNA , Rim/patologia , Neoplasias Renais/patologia
11.
Molecules ; 27(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296474

RESUMO

Although the fruit of Ficus tikoua Bur. has been consumed by montanic people in China for centuries, its chemical and biological composition was still unclear. A series of comprehensive investigations on its chemical constituents and bioactivities were carried out for the first time. As a result, six compounds were isolated and identified as the main components in this fruit. GC-MS analysis of the lipid components demonstrated that Ficus tikoua Bur. fruit contains some wholesome constituents such as fatty acids, vitamins, triterpenoids, and phytosterols. The fatty acids are mainly composed of linolenic acid (61.27%) and linoleic acid (22.79%). Furthermore, this fruit contains a relative high content of crude protein (9.41 ± 0.03%), total amino acids (9.28%), and total polyphenols (0.86 ± 0.01 g/100 g). The analysis of monosaccharide composition showed that the total polysaccharide mainly consists of glucose, glucuronic acid, xylose, arabinose, mannose, galactose, galacturonic acid, and rhamnose. The polysaccharide, polyphenol, water, ethanol, and flavonoid extracts exhibited prominent antioxidant activity determined by ABTS, DPPH, and FRAPS methods. Meanwhile, the total polysaccharide exhibited significant immunomodulatory effect by enhancing the release of cytokines and expression of iNOS and COX-2 in RAW264.7 cells, significantly decreasing the expression of c-Jun and p65 proteins in the cytoplasm; increasing the translocation of c-Jun and p65 to the nucleus; and regulating the phosphorylation level of Akt, PI3K, and PDK1 in the PI3K/AKT signaling pathway. This study proved that the fruit of F. tikoua is a reliable source of functional food.


Assuntos
Ficus , Fitosteróis , Triterpenos , Humanos , Ficus/química , Antioxidantes/química , Frutas/química , Polifenóis/farmacologia , Polifenóis/análise , Ciclo-Oxigenase 2 , Galactose/análise , Manose/análise , Arabinose/análise , Ramnose/análise , Xilose/análise , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Polissacarídeos/química , Flavonoides/análise , Monossacarídeos/análise , Citocinas/análise , Água/análise , Lipídeos/análise , Vitaminas/análise , Triterpenos/análise , Fitosteróis/análise , Glucose/análise , Etanol/análise , Aminoácidos/análise , Glucuronatos , Ácidos Linolênicos , Ácidos Linoleicos/análise
12.
Pharm Biol ; 60(1): 899-908, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36082828

RESUMO

CONTEXT: The alkaloids of Narcissus tazetta L. var. Chinensis Roem (Amaryllidaceae) have antitumor and antiviral activities. However, the immunopharmacological effects of one of its constituents, pseudolycorine chloride (PLY), have not been reported yet. OBJECTIVE: We evaluated the effect of PLY on myeloid-derived suppressor cells (MDSCs) expansion and differentiation into monocyte-like MDSCs (M-MDSCs) and examined whether PLY alleviates Th17 cell-mediated experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). MATERIALS AND METHODS: In vitro, MDSCs were treated with PLY (0.67, 2 and 6 µM) or solcitinib (10 µM, positive control) for 48 or 96 h, and their proliferation, expansion, and differentiation into M-MDSCs were examined by flow cytometry. Myelin oligodendrocyte glycoprotein (MOG35-55) was used to induce EAE in female C57BL/6 mice, and the mice were treated with 40 mg/kg/d PLY or 1 mg/kg/d FK-506 (tacrolimus, positive control) for 21 days. Inflammatory infiltration, spinal cord demyelination, and MDSCs and Th17 cells infiltration into the spinal cord were examined using haematoxylin and eosin staining, Luxol fast blue staining, and immunofluorescence, respectively. RESULTS: In vitro, PLY (IC50/24 h = 6.18 µM) significantly inhibited IL-6 and GM-CSF-induced MDSCs proliferation, expansion and differentiation into M-MDSCs at all concentrations used. However, these concentrations did not show cytotoxicity. In mice, PLY (40 mg/kg) treatment alleviated EAE and inhibited inflammatory infiltration, demyelination, and MDSCs and Th17 cells infiltration into the spinal cord. DISCUSSION AND CONCLUSIONS: PLY may be an excellent candidate for the treatment of MS and other autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Células Supressoras Mieloides , Alcaloides de Amaryllidaceae , Animais , Autoimunidade , Proliferação de Células , Sistema Nervoso Central/patologia , Cloretos/farmacologia , Citocinas , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/patologia , Fenantridinas , Células Th17
13.
Front Cell Dev Biol ; 10: 861916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938161

RESUMO

Commensal microbes cross talk with their colonized mucosa. We show that microbes and their cell wall components induce an inflammatory response in cultured human mucosal cells derived from the nonmalignant nasopharyngeal epithelium (NNE) cells in vitro. NNE cells show significant induction of NF-κB with nuclear shuttling and inflammatory gene response when exposed to Gram-positive bacteria (streptococci) or peptidoglycan (PGN), a component of the Gram-positive bacterial cell wall. This response is abrogated in nasopharyngeal carcinoma (NPC)-derived cell lines. The inflammatory response induced by NF-κB signaling was blocked at two levels in the tumor-derived cells. We found that NF-κB was largely trapped in lipid droplets (LDs) in the cytoplasm of the NPC-derived cells, while the increased expression of lysine-specific histone demethylase 1 (LSD1, a repressive nuclear factor) reduces the response mediated by remaining NF-κB at the promoters responding to inflammatory stimuli. This refractory response in NPC cells might be a consequence of long-term exposure to microbes in vivo during carcinogenic progression. It may contribute to the decreased antitumor immune responses in NPC, among others despite heavy T-helper cell infiltration, and thus facilitate tumor progression.

14.
Leuk Lymphoma ; 63(12): 2869-2878, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35849332

RESUMO

Previous studies have identified several ICAM3 transcript variants and mainly investigated the function of the longest transcript of ICAM3 in various tumor progressions. However, the role of the other ICAM3 transcript variants remains unclear. Herein, we detected the expression of ICAM3 transcript variants 1-4 in DLBCL cells and tumor tissues, disclosed that variants 1, 3, and 4 were expressed in normal B cell lines and 3 DLBCL cell lines except SU-DHL-2 as well as tumor tissues, while variant 2 was not detected. Moreover, we found that ectopic expression of variants 1-4 enhanced cell proliferation by accelerating the cell cycle in SU-DHL2 cells in vitro. In addition, variants 1-4 overexpression showed no effects on SU-DHL2 cell apoptosis. Interestingly, the expression of variants 1, 3, and 4 promoted cell migration and EMT process while variant 2 had no effects. Collectively, the above results displayed the different roles of ICAM3 transcript variants in mediating DLBCL progression.


Assuntos
Molécula 3 de Adesão Intercelular , Linfoma Difuso de Grandes Células B , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Molécula 3 de Adesão Intercelular/genética , Linfoma Difuso de Grandes Células B/patologia
15.
Front Immunol ; 13: 913667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844610

RESUMO

Background: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a multisystem autoimmune disease with small-vessel involvement. In AAV, microscopic polyangiitis (MPA) and granulomatosis with polyangiitis (GPA) are major clinicopathologic variants. In addition, myeloperoxidase (MPO) and proteinase 3 (PR3) are major target antigens. The objective of the study was to explore the predictive factors for long-term survival in AAV patients. Materials and Methods: A multicenter retrospective study was carried out on 407 patients between 2005 and 2020. Clinical parameters were obtained from laboratory tests including the ANCA types, antinuclear antibody (ANA), extractable nuclear antigen (ENA), anti-streptolysin O (ASO), glomerular filtration rate (GFR), and the laboratory examinations for the blood routine, liver function, renal function, and immunity, etc. The data for clinical parameters were collected from electronic medical records (EMRs), and the data for patient survival were acquired through regular follow-up. The association of clinical parameters with overall survival (OS) along with 3-year and 5-year survival rates was analyzed, and the nomogram as a predictive model was established according to the analysis results. Results: In the present study, 336 (82.6%) patients and 46 (11.3%) patients were diagnosed with MPA and GPA, respectively. The mean and median OS for all the patients were 2,285 and 2,290 days, respectively. The 1-year, 3-year, 5-year, and 10-year cumulative survival rates for all the patients were 84.2%, 76.3%, 57.2%, and 32.4%, respectively. Univariate and multivariate survival analyses indicated that the independent prognostic factors included age, pathological categories (MPA, GPA, and other types), serum ANCA types (negative or positive for MPO and/or PR3), ANA, ASO, GFR, lymphocyte, neutrophil-to-lymphocyte ratio (NLR), and C-reactive protein (CRP), and these clinical parameters except for ASO were used to construct a nomogram. The nomogram for 3-year and 5-year survival rates had a C-index of 0.721 (95% CI 0.676-0.766). The calibration curves showed that the predicted values of the nomogram for 3-year and 5-year survival rates were generally consistent with practical observed values, and decision curve analysis (DCA) further demonstrated the practicability and accuracy of the predictive model. Conclusion: Laboratory tests at diagnosis have great significance in the prediction of long-term survival in AAV patients.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Granulomatose com Poliangiite , Poliangiite Microscópica , Anticorpos Anticitoplasma de Neutrófilos , Humanos , Mieloblastina , Prognóstico , Estudos Retrospectivos
16.
J Immunol Res ; 2022: 4589182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692501

RESUMO

The role of miRNAs as crucial components in carcinogenesis has been well documented. However, whether and how miR-214 influences oral cancer cells' drug resistance remains to be elucidated, and its downstream targets are still under investigation. Hence, this research is aimed at determining miR-214 and ULK1 expression in oral cancer before and after chemotherapy and their correlations with cancer cell growth. Human oral normal epithelial cells and human tongue squamous cell carcinoma CAL-27 cells were cultured to detect miR-214 and ULK1 levels. It was found that before chemotherapy, miR-214 was higher, while ULK1 was underexpressed in CAL-27 cells, versus normal epithelial cells. After chemotherapy, miR-214 decreased obviously in CAL-27 cells, while ULK1 level increased significantly. In addition, autophagy-related genes (Beclin 1, mTOR, and P53) in CAL-27 cells were found to be significantly inhibited before chemotherapy and were obviously increased after chemotherapy. Moreover, to further determine the impacts of miR-214 and ULK1 on oral cancer cell growth after chemotherapy, the two were overexpressed or silenced in CAL-27 cells after transfection. We found that ULK1 could effectively decrease the activity and invasion of CAL-27 cells and increase their apoptosis level, while miR-214 could antagonize its antitumor effect. Therefore, miR-214 can be used as an early prognostic biomarker for oral cancer, and ULK1 is a new candidate therapeutic target.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias Bucais , Neoplasias da Língua , Apoptose/genética , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/genética
17.
Hortic Res ; 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184182

RESUMO

Brassica parachinensis is a popular leafy vegetable. It is able to accumulate high concentration of Cd, however, the molecular mechanism of Cd accumulation is unknown. This study investigated the function and regulatory mechanism of the Cd-responsive metal ion transporter gene BrpHMA2. BrpHMA2 was induced by Cd stress and specifically expressed in vascular tissues, and the protein was localized in the plasma membrane. Heterologous expression of BrpHMA2 enhanced Cd accumulation and Cd sensitivity in transgenic Arabidopsis and yeast. After Cd stress, the transcriptional factors BrpNAC895 and BrpABI449, which may recognize the ABREs in the BrpHMA2 promoter, were also differentially expressed. The transcriptional regulation of BrpHMA2 was further investigated using ChIP-qPCR, EMSA and LUC reporter activity analysis employing the transient expression system of Brassica parachinensis protoplasts and tobacco leaves and the E. coli expression system. By binding to the promoter, BrpNAC895 induced the transcription of BrpHMA2. BrpABI449 might bind to the BrpHMA2 promoter or interact with BrpNAC895 to interfere with the action of BrpNAC895. The findings suggest that BrpHMA2 is a membrane-based afflux-type Cd transporter involved in the Cd2+ uptake and long-distance transport in plants. BrpNAC895 and BrpABI449, which function as the transcription activator and repressor respectively, coregulate BrpHMA2 expression.

18.
Genes Genomics ; 44(4): 487-497, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34985712

RESUMO

BACKGROUND: Acetyl-CoA acyltransferase 1 (ACAT1) is a key enzyme catalyzing the production of mitochondrial ketone bodies. We have shown that ACAT1 is down-regulated in kidney renal clear cell carcinoma (KIRC) previously. OBJECTIVE: To investigate the reasons for downregulation of ACAT1 in KIRC and explore the underlying mechanisms involved in metastatic inhibition regulated by ACAT1. METHODS: The Gene Expression Omnibus (GEO) database was queried for meta-analysis of ACAT1 mRNA expression in KIRC. The UALCAN website was used to compare the methylation levels of the ACAT1 promoter region in KIRC and normal tissues. RT-qPCR was used to quantitate ACAT1 transcription levels. The GCBI and Tarbase V.8 databases were used to predict miRNAs that may target the mRNA of ACAT1. The correlation between mRNA expression of ACAT1, MMP7 (matrix metallopeptidase 7), CDH1 (E-cadherin), EpCAM (epithelial cell adhesion molecule), and VIM (vimentin) was analyzed. Extracellular MMP7 protein was quantitated using an ELISA assay. RESULTS: The methylation level of the ACAT1 promoter region in KIRC was significantly higher than that in the normal kidney tissues. The ACAT1 mRNA expression in the KIRC cell lines was restored after treatment with 5-aza-dC (p < 0.05). MiR-21-5p is a conserved microRNA targeting ACAT1. It is expressed at a significantly higher level in KIRC than in normal tissues (p < 0.001). MiR-21-5p miRNA expression negatively correlates with ACAT1 mRNA expression. The expression of miR-21-5p is higher at the T3-T4 stages and in the histologic grades G3-G4. Patients with high miR-21-5p expression tended to have lower overall survival, suggesting that miR-21-5p could serve as a potentially valuable diagnostic biomarker for KIRC (AUC = 0.957; p < 0.001). A mimetic of miR-21-5p inhibited the expression of ACAT1 mRNA and protein. In addition, ACAT1 mRNA expression positively correlates with CDH1 and EpCAM but is negatively correlated with VIM. Overexpression of ACAT1 suppresses the secretion of MMP7 in KIRC cells. CONCLUSION: Expression of ACAT1 in KIRC is controlled at two levels, firstly by the hypermethylation of the ACAT1 promoter region and secondly by overexpression of miR-21-5p. Downregulation of ACAT1 expression correlates with epithelial-mesenchymal transition (EMT).


Assuntos
Acetil-CoA C-Acetiltransferase , Carcinoma de Células Renais , Transição Epitelial-Mesenquimal , Neoplasias Renais , MicroRNAs , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Epigênese Genética , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética
19.
Nurs Open ; 9(3): 1794-1804, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34003590

RESUMO

AIMS: This study aimed to develop and validate the psychometric properties of Information Needs Questionnaire for Differentiated Thyroid Cancer (INQ-DTC) in DTC patients with radioactive iodine (RAI) therapy. DESIGN: Mixed methods. METHODS: Using qualitative methods, we developed the initial questionnaire from a personal perspective of information needs of 15 patients with DTC. We used a formal Delphi consensus process to help assess the initial questionnaire and provide recommendations for its application. Totally, 230 DTC patients with RAI therapy were selected for the process of validation. RESULTS: The final version of INQ-DTC contains 33 items. The total Cronbach's alpha coefficient was 0.945, the total split-half reliability was 0.822, and the test-retest value was 0.984 for the overall score. Exploratory factor analysis extracted 5 factors, which could explain 61.86% of the total variance. The Scale-level content validity index (S-CVI) was 0.928, and 0.929 for the item-level content validity index (I-CVI).


Assuntos
Adenocarcinoma , Neoplasias da Glândula Tireoide , Humanos , Radioisótopos do Iodo/uso terapêutico , Psicometria/métodos , Reprodutibilidade dos Testes , Inquéritos e Questionários , Neoplasias da Glândula Tireoide/radioterapia
20.
J Biomed Mater Res B Appl Biomater ; 110(5): 1178-1191, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34905286

RESUMO

The interconnectivity of porous scaffold is vital for cell and tissue infiltration, and vascular networks formation, determining the successful bone regeneration in large bone defects. Here, inspired by the lotus-root and Haversian system of natural bone, a nano-hydroxyapatite/polyurethane (n-HA/PU) lotus root-like scaffold inlaid with micro holes on the wall of the adjacent channel was utilized to mediate cell biomineralization and vascularized bone tissue regeneration. Such a particular lotus-type structure remarkably promoted cells to proliferate and infiltrate into the center of the entire scaffold, serving as a clue to account for regulating cell alignment and differentiation physically. In vitro studies suggested that apatite accumulated dramatically on the channel wall in the lotus-type scaffold, probably promoting specific osteogenic differentiation of cells by the orientated channels, even in the absence of osteogenic factors. In vivo creation of critical bone defects (15-mm segments) was done in the radius of rabbits and implanted with the scaffold of different geometry to assess the structural parameters on the efficacy of new bone regeneration. The more extensive positive staining of BMP-2, more considerable amount of infiltrated capillary, more robust new bone formation, particularly the biomechanical strength of lotus-type scaffold group could reach the level of the control group without surgery, indicating that the lotus-type scaffold was more favorable for new bone tissue formation along tube-like channels. These results highlighted the potential of this biomimetic scaffold for cell and tissue infiltration and thus repair large bony defects.


Assuntos
Osteogênese , Alicerces Teciduais , Animais , Biomineralização , Regeneração Óssea , Osso e Ossos , Diferenciação Celular , Durapatita/química , Durapatita/farmacologia , Ósteon , Coelhos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA