Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
World J Gastrointest Surg ; 15(7): 1354-1362, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37555119

RESUMO

BACKGROUND: Gastric cancer is the most common cause of cancer-related deaths, and is classified according to its location in the proximal, middle, or distal stomach. Surgical resection is the primary approach for treating gastric cancer. This prospective study aimed to determine the best reconstruction method after distal gastrectomy for gastric cancer. AIM: To explore the efficacy of different staplers and digestive tract reconstruction (DTR) methods after radical gastrectomy and their influence on prognosis. METHODS: Eighty-seven patients who underwent radical gastrectomy for distal gastric cancer at our institution between April 2017 and April 2020 were included in this study, with a follow-up period of 12-26 mo. The patients were assigned to four groups based on the stapler and DTR plan as follows: Billroth Ⅰ (B-I) reconstruction + linear stapler group (group A, 22 cases), B-I reconstruction + circular stapler group (group B, 22 cases), Billroth II (B-II) reconstruction + linear stapler group (group C, 22 cases), and B-II reconstruction + circular stapler group (group D, 21 cases). The pathological parameters, postoperative gastrointestinal function recovery, postoperative complications, and quality of life (QOL) were compared among the four groups. RESULTS: No significant differences in the maximum diameter of the gastric tumors, total number of lymph nodes dissected, drainage tube removal time, QLQ (QOL questionnaire)-C30 and QLQ-STO22 scores at 1 year postoperatively, and incidence of complications were observed among the four groups (P > 0.05). However, groups A and C (linear stapler) had significantly lower intraoperative blood loss and significantly shorter anastomosis time, operation time, first fluid diet intake time, first exhaust time, and length of postoperative hospital stay (P < 0.05) than groups B and D (circular stapler). CONCLUSION: Linear staplers offer several advantages for postoperative recovery. B-I and B-II reconstruction methods had similar effects on QOL. The optimal solution can be selected according to individual conditions and postoperative convenience.

2.
Acta Trop ; 237: 106722, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36252729

RESUMO

Toxoplasma gondii is an obligate intracellular protozoan parasite which seriously threatens the health of domestic animals and humans. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts greater than 200 nucleotides, which are widely involved in transcriptional and epigenetic regulations. However, little is known about the roles of host lncRNAs in the response to T. gondii infections. In this study, using Illumina sequencing technology, we analyzed the expression profiles of mRNAs and lncRNAs in BALB/c mouse brain following infection by T. gondii PRU strain (type II genotype) cysts. The identified differentially expressed (DE) RNAs were subjected to bioinformatics analysis. A total of 2,090 annotated lncRNAs along with 3,577 novel lncRNAs were identified. In the acutely infected mouse brain, a total of 330 mRNAs and 19 lncRNAs were dys-regulated, whereas 136 DE mRNAs and 9 DE lncRNAs were identified in chronically infected mouse brain. GO analysis revealed that these DE mRNAs identified at acute infection stage were involved in immune response, whereas DE mRNAs found at chronic infection stage were mostly enriched in response to protozoan. KEGG analysis showed that DE mRNAs were significantly enriched in disease related pathways. In addition, the putative mRNA-lncRNA co-expression network was constructed, and several hub regulatory RNAs were identified based on the transcriptome data. This study firstly characterized the co-expression profile of mRNAs and lncRNAs in mouse brain infected with T. gondii and provided a framework for further studies of the roles of lncRNAs in host neuropathology during toxoplasmosis progression.


Assuntos
RNA Longo não Codificante , Toxoplasma , Toxoplasmose , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Toxoplasmose/genética , Camundongos Endogâmicos BALB C , Encéfalo/metabolismo , Perfilação da Expressão Gênica
3.
Foods ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496556

RESUMO

The anti-cancer effects of selenylated plant polysaccharides are a focus of research. As a natural plant with extensive biological effects, there have been few studies related to edible purslane (Portulaca oleracea L.). Thus, in this study, soluble P. oleracea polysaccharides (PPS) were extracted from the dried P. oleracea and then selenylated chemically using the HNO3-Na2SeO3 method to obtain two selenylated products, namely, SePPS1 and SePPS2. Compared with the extracted PPS, SePPS1 and SePPS2 had much higher Se contents (840.3 and 1770.5 versus 66.0 mg/kg) while also showing lower contents in three saccharides-arabinose, fucose, and ribose-and higher contents in seven saccharides including galactose, glucose, fructose, mannose, rhamnose, galacturonic acid, and glucuronic acid, but a stable xylose content demonstrated that the performed chemical selenylation of PPS led to changes in monosaccharide composition. Moreover, SePPS1 and SePPS2 shared similar features with respect to monosaccharide composition and possessed higher bioactivity than PPS in human colon cancer HCT-116 cells. Generally, SePPS1 and SePPS2 were more active than PPS with respect to cell growth inhibition, the alteration of cell morphology, disruption of mitochondrial membrane potential, intracellular reactive oxygen species (ROS) generation, the induction of cell apoptosis, and upregulation or downregulation of five apoptosis-related genes and proteins such as Bax, Bcl-2, caspases-3/-9, and cytochrome C, that cause cell apoptosis and growth suppression via the ROS-mediated mitochondrial pathway. SePPS2 consistently showed the highest capacity to exert these observed effects on the targeted cells, suggesting that the performed chemical selenylation of PPS (in particular when higher degrees of selenylation are reached) resulted in an increase in activity in the cells. It can thus be concluded that the performed selenylation of PPS was able to incorporate inorganic Se into the final PPS products, changing their monosaccharide composition and endowing them with enhanced nutraceutical and anti-cancer effects in the colon.

4.
Phytomedicine ; 106: 154427, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36088791

RESUMO

BACKGROUND: Liver dysfunction and liver failure are serious complications of sepsis, directly leading to septic progression and death. Now, there is no specific therapeutics available for sepsis-related liver dysfunction. Prim-O-glucosylcimifugin (POG), a chromone richest in the roots of Saposhnikovia divaricata (Turcz.) Schischk, is usually used to treat headache, rheumatoid arthritis and tetanus. While, the underlying mechanisms of POG against sepsis-induced liver damage and dysfunction are still not clear. PURPOSE: To study the anti-sepsis effect of POG, and its pharmacological mechanism to protect liver injury by weakening the function of macrophages in septic livers through inhibiting NOD-like receptor protein 3 (NLRP3) inflammasome pathway. METHOD: In vivo experiments, septic mouse model was induced by cecal ligation and puncture (CLP), and then the mortality was detected, liver inflammatory damages and plasma biomarkers of liver injury were evaluated by histopathological staining and biochemical assays, respectively. In vitro experiments, mouse primary peritoneal macrophages were treated with lipopolysaccharide (LPS) and ATP, and then the activated-inflammasomes, macrophage migration and polarization were detected by ASC immunofluorescence staining, transwell and flow cytometry assays, respectively. NLRP3 inflammasome components NLRP3, caspase-1, IL-1ß and IL-18 protein expressions were detected using western blot assays, and the contents of IL-1ß and IL-18 were measured by ELISA assays. RESULTS: POG treatment significantly decreased the mortality, liver inflammatory damages, hepatocyte apoptosis and plasma biomarkers of liver injury in CLP-challenged male WT mice, which were comparable to those in ibuprofen (a putative anti-inflammatory drug)-supplemented septic male WT mice and septic NLRP3 deficient-male mice. POG supplementation significantly suppressed NLRP3 inflammasome activation in septic liver tissues and cultured macrophages, by significantly reducing NLRP3, cleaved-caspase-1, IL-1ß and IL-18 levels, the activated-inflammasome ASC specks, and macrophage infiltration and migration, as well as M1-like polarization, but significantly increasing M2-like polarization. These findings were similar to the pharmacological effects of ibuprofen, NLRP3 deficiency, and a special NLRP3 inhibitor, MCC950. CONCLUSION: POG protected against sepsis by inhibiting NLRP3 inflammasome-mediated macrophage activation in septic liver and attenuating liver inflammatory injury, indicating that it may be a potential anti-sepsis drug candidate.


Assuntos
Inflamassomos , Sepse , Trifosfato de Adenosina , Animais , Caspase 1/metabolismo , Cromonas , Ibuprofeno , Interleucina-18 , Lipopolissacarídeos , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo
5.
Appl Bionics Biomech ; 2022: 9900146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498143

RESUMO

Objective: To evaluate the efficiency of low-level laser therapy on the distal osseous defects of the mandibular second molar (M2) after the adjacent impacted third molar (M3) extraction. Methods: A total of 59 clinic cases were screened out, whose M3 were impacted and the distal alveolar bone of M2 had been destroyed horizontally. They were randomly divided into 2 groups based on whether they would have laser irradiation or not after M3 extraction. Then, postoperative complications of the 2 groups were compared. The alveolar bone level distal to M2 was established before and 3 to 6 months after M3 extraction by radiographic evaluation, which was compared between two groups. Results: The incidence of severe pain and mouth-opening limitation was significantly lower in the LLLT group than that in the control group. The amount of bone formation in the LLLT group was higher than that in the control group 3 months after the operation, and the difference was statistically significant. But the difference was not statistically significant 6 months after surgery. Conclusion: LLLT may alleviate postoperative complications and improve early osteogenesis. It is a viable option for use in the treatment of osseous defects distal to mandibular second molars following extraction of impacted third molars.

6.
J Nat Prod ; 85(6): 1522-1539, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35608269

RESUMO

The inherent structural instability of some physalins has hampered the isolation and identification of these compounds for approximately 50 years, and an effective method to overcome these challenges remains unavailable. In the present study, the unprecedented tautomerization mechanism of unstable physalins was elucidated by performing isotopic labeling experiments and DFT calculations, which led to the successful separation of tautomers and isolation of highly pure products for the first time. As a result, 15 new physalins, physaminins A-O (1-15), as well as 17 known analogues (16-32), were isolated from the whole plants of Physalis minima L. The chemical structures of the new compounds were established by performing a comprehensive analysis of spectroscopic data, and their absolute configurations were confirmed by using computational ECD calculations and/or single-crystal X-ray diffraction analyses. All obtained isolates were evaluated for their antiproliferative effects against four human cancer cell lines (A549, HepG2, MCF-7, and SCG-7901) and two noncancerous cell lines (RAW 264.7 and human normal hepatocytes L02), as well as their anti-inflammatory activities by measuring their abilities to inhibit NO production in LPS-stimulated murine RAW 264.7 cells in vitro. Compounds 1-5, 13, 16, 18, 19, 23, and 30 exerted significant antiproliferative effects on the four human cancer lines, with IC50 values ranging from 0.2(0) to 24.7(2) µM, and these compounds were not toxic to the two noncancerous cell lines at a concentration of 10 µM. Moreover, compounds 7, 10, 11, 12, 14, 17, 22, and 27 significantly inhibited NO production, with IC50 values ranging from 2.9(1) to 9.5(2) µM.


Assuntos
Physalis , Animais , Anti-Inflamatórios/farmacologia , Humanos , Camundongos , Estrutura Molecular , Physalis/química , Células RAW 264.7
7.
Toxicol Appl Pharmacol ; 444: 116037, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489526

RESUMO

Lung carcinoma is the leading cause of cancer-related death worldwide. Chemotherapy remains the cornerstone of lung cancer treatment. Unfortunately, most types of cancer will develop resistance to chemotherapies over the time. One of the efforts to prevent the chemotherapy resistance is to find alternative chemotherapy drugs. Mogrol has been found to have antitumor activity. However, little is known about the pharmacological mechanisms underlying the suppression of mogrol on lung cancers. In this study, we observed that mogrol exposure significantly reduced the tumor volume and weight in tumor-bearing nude mice without obvious effect on body weight and cardiac function. Mogrol also significantly inhibited the proliferation and migration of lung cancer cells, including non-small-cell lung carcinoma cells, A549, H1299, H1975 and SK-MES-1 cells, with no obvious effect on control human bronchial epithelial cells (HBE). Further studies revealed that mogrol stirred excessive autophagy and autophagic flux, and finally, autophagic cell death, in lung cancer cells, which could be attenuated by autophagy inhibitors, 3-MA and chloroquine. Furthermore, mogrol significantly activated AMPK to induce autophagy and autophagic cell death, which could be abrogated by Compound C, an AMPK inhibitor. In addition, mogrol induced a significant increase in p53 activity in lung cancer cells, accompanied with cell cycle arrest and apoptosis, which could be weakened by p53 silence. Our results indicated that mogrol effectively suppressed lung cancer cells in vivo and in vitro by inducing the excessive autophagy and autophagic cell death via activating AMPK signaling pathway, as well as cell cycle arrest and apoptosis via activating p53 pathway.


Assuntos
Morte Celular Autofágica , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Autofagia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Proteína Supressora de Tumor p53/metabolismo
8.
Front Endocrinol (Lausanne) ; 13: 844360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355567

RESUMO

Apelin (APLN), as a ligand for APJ (an orphan G-protein-coupled receptor), is an adipokine with pleiotropic effects in many physiological processes of the body. It has an important role in the control of reproduction particularly in females (mainly in control of ovarian function). This study was carried out to investigate the mRNA and protein amounts of APLN/APJ in granulose cells (GCs) of ovarian follicles with small (SF), medium (MF), and large (LF) sizes of buffalo (Bubalus bubalis) and the effect of IGF1 and follicle-stimulating hormone (FSH) on the expression levels of APLN/APJ. In addition, we evaluated the effect of various doses of APLN (isoforms -13 and -17) singly or in combination with IGF1 and FSH on estradiol (E2) and progesterone (P4) secretion in GCs. The mRNA and protein abundance of APLN was the highest in GCs of LF while the APJ expression enhanced with follicle enlargement in GCs (p-value <0.01). IGF1 and FSH elevated the mRNA and protein amounts of APLN and FSH, and IGF1 increased the expression of APJ in buffalo GCs (p-value <0.01). Both isoforms of APLN (-13/-17) singly or in the presence of IGF1 or FSH increased the secretion of E2 and P4 with or without preincubation of cells with APJ antagonist (ML221 10 µM), although we had some variation in the effects. Concurrently, APLN-13/-17 significantly increased the mRNA and protein expression of CYP19A1 and StAR (p-value <0.01). ML221 substantially diminished the secretion of E2 and P4 and also the expression of CY19A1 and StAR in buffalo GCs (p-value <0.01). We also revealed that APLN-13/-17 (10-9 M), singly or in response to IGF1 and FSH, increased the production of E2 and P4 in different times of stimulation. In conclusion, APLN may play a crucial role in steroidogenesis and follicular development in ovarian GCs of buffalo.


Assuntos
Búfalos , Ovário , Animais , Apelina/genética , Apelina/metabolismo , Apelina/farmacologia , Receptores de Apelina/metabolismo , Feminino , Células da Granulosa
9.
Toxicol Appl Pharmacol ; 441: 115988, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35307375

RESUMO

Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations account for 35% of the genetic alterations in non-small cell lung cancer (NSCLC). The Src-homology region 2-containing protein tyrosine phosphatase 2 (SHP2), encoded by PTPN11, is closely involved in RAS downstream pathways and development of many tumors by affecting cell proliferation, differentiation, and immunity. Targeting SHP2 with small molecules may be a promising avenue for the treatment of KRAS-mutant (mut) NSCLC. Herein, hexachlorophene (HCP) was identified as a SHP2 inhibitor with an IC50 value of 5.63 ± 0.75 µM through screening of the FDA-approved drug library. HCP specifically inhibited SHP2 rather than other phosphatases. Molecular docking showed that HCP displayed an orientation favorable for nucleophilic attack in the catalytic domain of SHP2. HCP suppressed viability of multiple KRAS-mut and KRAS-wild type cells and induced senescence and apoptosis in KRAS-mut cells. Moreover, HCP reversed epithelial-mesenchymal transition to suppress metastasis in KRAS-mut cells, and inhibited the RAS/MEK/ERK and PI3K/AKT signaling pathways by suppression of SHP2 phosphorylation and formation SHP2/Grb2/Gab1/SOS1 complex. In summary, HCP can act as a specific SHP2 inhibitor to inhibit KRAS-mut NSCLC cell proliferation and metastasis and induce senescence through suppression of the RAF/MEK/ERK and PI3K/AKT pathways. HCP warrants further investigation as a new compound skeleton for the development of selective SHP2 inhibitors for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Hexaclorofeno , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais
10.
J Asian Nat Prod Res ; 24(8): 713-721, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34647509

RESUMO

Three new caffeoyl derivatives (1-3), together with two known ones (4-5), were isolated from the whole plant of Elephantopus scaber Linn. The structures of the new compounds were elucidated using detailed spectroscopic analysis. Compound 4 was obtained and its NMR data were given for the first time. All isolates were evaluated for their anti-inflammatory activity against lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production and pro-inflammatory cytokines release in RAW 264.7 cells. Compounds 2-5 showed mild inhibitory activities with IC50 values ranging from 64.78 to 87.21 µM, and 3-4 could inhibit LPS-induced tumor necrosis factor-α (TNF-α) production.


Assuntos
Asteraceae , Lipopolissacarídeos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Asteraceae/química , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico , Células RAW 264.7
11.
Shanghai Kou Qiang Yi Xue ; 31(4): 418-422, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36710558

RESUMO

PURPOSE: To evaluate the clinical benefits of Er:YAG laser combined with guided bone regeneration (GBR) in the treatment of peri-implantitis-assocaited osseous defects. METHODS: Twenty-six patients (34 implants in total) who underwent implant restoration in Dental Disease Prevention and Treatment Institute, Jiading District, from 2017 to 2019 and were diagnosed with peri-implantitis with osseous defects, and randomly divided into the experimental group and control group. The two groups of patients received open flap surgery, debridement and GBR treatment. The only difference in the experimental group was the use of Er: YAG laser to modulate and remove inflammatory tissue as well as to decontaminate the implant surface, instead of traditional mechanical treatment in the control group. The probing depth (PD), bleeding on probing (BOP), and plaque index (PI), the height of the bone defect around the implant (reduce of marginal bone level, RBL) were recorded and compared. SPSS 20.0 software package was used to analyze the data. RESULTS: The PD, BOP, PI and RBL of the two groups of patients were significantly improved after treatment with different methods. There was no significant difference in the improvement of PD, BOP and PI between the two groups 6, 12 and 24 months after treatment, while the improvement of RBL in the experimental group was significantly better than that of the control group 12 and 24 months after treatment. CONCLUSIONS: In the treatment of GBR with peri-implantitis and osseous defects, Er: YAG laser therapy is more effective than traditional mechanical methods, and is more conducive to the regeneration of new bone.


Assuntos
Terapia a Laser , Lasers de Estado Sólido , Peri-Implantite , Humanos , Desbridamento/métodos , Implantes Dentários/efeitos adversos , Lasers de Estado Sólido/uso terapêutico , Terapia com Luz de Baixa Intensidade , Peri-Implantite/cirurgia
12.
Foods ; 10(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34829068

RESUMO

The immunomodulation of chemically selenylated polysaccharides has been attracting more attention recently, but the corresponding performance of the yam polysaccharides (YPS) with lower selenylation extent remains, thus far, unsolved. In this study, the YPS was selenylated with Na2SeO3 under acidic conditions generated by HNO3 to reach two lower selenylation extents, yielding two selenylated YPSs, namely SeYPS-1 and SeYPS-2 with selenium contents of 715 and 1545 mg/kg, respectively. The results indicated that YPS, SeYPS-1, and SeYPS-2 all had in vitro immuno-modulation when using RAW 264.7 macrophages and murine splenocytes as cell models. In detail, the three polysaccharide samples at dose levels of 5-160 µg/mL showed insignificant cytotoxicity to the macrophages and splenocytes with cell exposure times of 12-24 h, because of the measured values of cell viability larger than 100%. However, Na2SeO3 at dose levels of 1.3-3.25 µg/mL mostly caused obvious cytotoxic effects on the cells, resulting in reduced cell viability values or cell death, efficiently. The results demonstrated that, compared with YPS, both SeYPS-1 and SeYPS-2 at a lower dose level (5 µg/mL) were more active at promoting phagocytosis activity, increasing the CD4+/CD8+ ratio of the T-lymphocyte sub-population in the murine splenocyte, improving cytokine secretion, including interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor-α in the macrophages, or increasing interferon-γ secretion, but suppressing IL-4 production in the splenocytes. Consistently, SeYPS-2 has more potential than SeYPS-1 at exerting these assessed bioactivities in the cells. Thus, we conclude that a chemical modification of YPS using trace element Se at a lower selenylation extent could bring about higher immunomodulatory activity towards macrophages and splenocytes, while selenylation extent of YPS is a critical factor used to govern the assessed activity changes of YPS.

13.
Cancer Med ; 10(14): 4677-4696, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34165267

RESUMO

INTRODUCTION: Traditional cancer therapy has many disadvantages such as low selectivity and high toxicity of chemotherapy, as well as insufficient efficacy of targeted therapy. To enhance the cytotoxic effect and targeting ability, while reducing the toxicity of antitumor drugs, an antibody drug conjugate (ADC) was developed to deliver small molecular cytotoxic payloads directly to tumor cells by binding to specific antibodies via linkers. METHOD: By reviewing published literature and the current progress of ADCs, we aimed to summarize the basic characteristics, clinical progress, and challenges of ADCs to provide a reference for clinical practice and further research. RESULTS: ADC is a conjugate composed of three fundamental components, including monoclonal antibodies, cytotoxic payloads, and stable linkers. The mechanisms of ADC including the classical internalization pathway, antitumor activity of antibodies, bystander effect, and non-internalizing mechanism. With the development of new drugs and advances in technology, various ADCs have achieved clinical efficacy. To date, nine ADCs have received US Food and Drug Administration (FDA) approval in the field of hematologic tumors and solid tumors, which have become routine clinical treatments. CONCLUSION: ADC has changed traditional treatment patterns for cancer patients, which enable the same treatment for pancreatic cancer patients and promote individualized precision treatment. Further exploration of indications could focus on early-stage cancer patients and combined therapy settings. Besides, the mechanisms of drug resistance, manufacturing techniques, optimized treatment regimens, and appropriate patient selection remain the major topics.


Assuntos
Imunoconjugados/uso terapêutico , Neoplasias/terapia , Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/imunologia , Efeito Espectador , Ensaios Clínicos como Assunto , Aprovação de Drogas , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Humanos , Imunoconjugados/imunologia , Terapia de Alvo Molecular/métodos , Neoplasias/imunologia , Neoplasias Pancreáticas/terapia
14.
Chin Med J (Engl) ; 134(11): 1267-1275, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34039862

RESUMO

ABSTRACT: Immunotherapy has opened a new era in cancer treatment. Drugs represented by immune checkpoint inhibitors have led to important breakthroughs in the treatment of various solid tumors, greatly improving the survival rate of cancer patients. Many types of immunotherapeutic drugs have become widely available; however, their efficacy is variable, and relatively few patients with advanced cancer experience life-altering durable survival, reflecting the complex and highly regulated nature of the immune system. The research field of cancer immunotherapy (CIT) still faces many challenges in pursuing the broader social goal of "curing cancer." Increasing attention has been paid to strengthening the understanding of the molecular or cellular drivers of resistance to immunotherapy, actively exploring more effective therapeutic targets, and developing combination therapy strategies. Here, we review the key challenges that have emerged in the era of CIT and the possible solutions or development directions to overcome these difficulties, providing relevant references for basic research and the development of modified clinical treatment regimens.


Assuntos
Imunoterapia , Neoplasias , Terapia Combinada , Humanos , Fatores Imunológicos , Neoplasias/terapia
15.
Cancer Med ; 10(6): 1964-1974, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33626238

RESUMO

OBJECTIVES: Recent studies showed prolonged survival for advanced epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) patients treated with both monotherapies and combined therapies. However, high costs limit clinical applications. Thus, we conducted this cost-effectiveness analysis to explore an optimal first-line treatment for advanced EGFR-mutant NSCLC patients. MATERIALS AND METHODS: Survival data were extracted from six clinical trials, including ARCHER1050 (dacomitinib vs. gefitinib); FLAURA (osimertinib vs. gefitinib/erlotinib); JO25567 and NEJ026 (bevacizumab +erlotinib vs. erlotinib); NEJ009 (gefitinib +chemotherapy vs. gefitinib); and NCT02148380 (gefitinib +chemotherapy vs. gefitinib vs. chemotherapy) trials. Cost-related data were obtained from hospitals and published literature. The effect parameter (quality-adjusted life year [QALY]) was the reflection of both survival and utility. Incremental cost-effectiveness ratio (ICER), average cost-effectiveness ratio (ACER), and net benefit were calculated, and the willingness-to-pay (WTP) threshold was set at $30828/QALY from the perspective of the Chinese healthcare system. Sensitivity analysis was performed to explore the stability of results. RESULTS: We compared treatment groups with control groups in each trial. ICERs were $1897750.74/QALY (ARCHER1050), $416560.02/QALY (FLAURA), -$477607.48/QALY (JO25567), -$464326.66/QALY (NEJ026), -$277121.22/QALY (NEJ009), -$399360.94/QALY (gefitinib as comparison, NCT02148380), and -$170733.05/QALY (chemotherapy as comparison, NCT02148380). Moreover, ACER and net benefit showed that the combination of EGFR-TKI with chemotherapy and osimertinib was of more economic benefit following first-generation EGFR-TKIs. Sensitivity analyses showed that the impact of utilities and monotherapy could be cost-effective with a 50% cost reduction. CONCLUSION: First-generation EGFR-TKI therapy remained the most cost-effective treatment option for advanced EGFR-mutant NSCLC patients. Our results could serve as both a reference for both clinical practice and the formulation of medical insurance reimbursement.


Assuntos
Antineoplásicos/economia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/economia , Acrilamidas/economia , Acrilamidas/uso terapêutico , Inibidores da Angiogênese/economia , Inibidores da Angiogênese/uso terapêutico , Compostos de Anilina/economia , Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/economia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/economia , Bevacizumab/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , China , Ensaios Clínicos como Assunto/economia , Análise Custo-Benefício , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/economia , Cloridrato de Erlotinib/uso terapêutico , Gefitinibe/economia , Gefitinibe/uso terapêutico , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Cadeias de Markov , Inibidores de Proteínas Quinases/uso terapêutico , Anos de Vida Ajustados por Qualidade de Vida , Quinazolinonas/economia , Quinazolinonas/uso terapêutico
16.
Foods ; 11(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35010140

RESUMO

The soluble polysaccharides from a non-conventional and edible plant purslane (Portulaca oleracea L.), namely PSPO, were prepared by the water extraction and ethanol precipitation methods in this study. The obtained PSPO were selenylated using the Na2SeO3-HNO3 method to successfully prepare two selenylated products, namely SePSPO-1 and SePSPO-2, with different selenylation extents. The assay results confirmed that SePSPO-1 and SePSPO-2 had respective Se contents of 753.8 and 1325.1 mg/kg, while PSPO only contained Se element about 80.6 mg/kg. The results demonstrated that SePSPO-1 and SePSPO-2 had higher immune modulation than PSPO (p < 0.05), when using the two immune cells (murine splenocytes and RAW 264.7 macrophages) as two cell models. Specifically, SePSPO-1 and SePSPO-2 were more active than PSPO in the macrophages, resulting in higher cell proliferation, greater macrophage phagocytosis, and higher secretion of the immune-related three cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß. Meanwhile, SePSPO-1 and SePSPO-2 were more potent than PSPO in the concanavalin A- or lipopolysaccharide-stimulated splenocytes in cell proliferation, or more able than PSPO in the splenocytes to promote interferon-γ secretion but suppress IL-4 secretion, or more capable of enhancing the ratio of T-helper (CD4+) cells to T-cytotoxic (CD8+) cells for the T lymphocytes than PSPO. Overall, the higher selenylation extent of the selenylated PSPO mostly caused higher immune modulation in the model cells, while a higher polysaccharide dose consistently led to the greater regulation effect. Thus, it is concluded that the employed chemical selenylation could be used in the chemical modification of purslane or other plant polysaccharides, when aiming to endow the polysaccharides with higher immuno-modulatory effect on the two immune cells.

17.
Epigenetics Chromatin ; 13(1): 49, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33168103

RESUMO

With the rapid development of next-generation sequencing technology, chromosome structural variation has gradually gained increased clinical significance in tumorigenesis. However, the molecular mechanism(s) underlying this structural variation remain poorly understood. A search of the literature shows that a three-dimensional chromatin state plays a vital role in inducing structural variation and in the gene expression profiles in tumorigenesis. Structural variants may result in changes in copy number or deletions of coding sequences, as well as the perturbation of structural chromatin features, especially topological domains, and disruption of interactions between genes and their regulatory elements. This review focuses recent work aiming at elucidating how structural variations develop and misregulate oncogenes and tumor suppressors, to provide general insights into tumor formation mechanisms and to provide potential targets for future anticancer therapies.


Assuntos
Carcinogênese/genética , Instabilidade Cromossômica , Animais , Cromotripsia , Reparo do DNA , Humanos
19.
J Nutr ; 150(9): 2322-2335, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32720689

RESUMO

BACKGROUND: Fish cannot use carbohydrate efficiently and instead utilize protein for energy supply, thus limiting dietary protein storage. Protein deposition is dependent on protein turnover balance, which correlates tightly with cellular energy homeostasis. Mitochondrial fatty acid ß-oxidation (FAO) plays a crucial role in energy metabolism. However, the effect of remodeled energy homeostasis caused by inhibited mitochondrial FAO on protein deposition in fish has not been intensively studied. OBJECTIVES: This study aimed to identify the regulatory role of mitochondrial FAO in energy homeostasis maintenance and protein deposition by studying lipid, glucose, and protein metabolism in fish. METHODS: Carnitine-depleted male Nile tilapia (initial weight: 4.29 ± 0.12 g; 3 mo old) were established by feeding them with mildronate diets (1000 mg/kg/d) for 6 wk. Zebrafish deficient in the carnitine palmitoyltransferase 1b gene (cpt1b) were produced by using CRISPR/Cas9 gene-editing technology, and their males (154 ± 3.52 mg; 3 mo old) were used for experiments. Normal Nile tilapia and wildtype zebrafish were used as controls. We assessed nutrient metabolism and energy homeostasis-related biochemical and molecular parameters, and performed 14C-labeled nutrient tracking and transcriptomic analyses. RESULTS: The mitochondrial FAO decreased by 33.1-88.9% (liver) and 55.6-68.8% (muscle) in carnitine-depleted Nile tilapia and cpt1b-deficient zebrafish compared with their controls (P < 0.05). Notably, glucose oxidation and muscle protein deposition increased by 20.5-24.4% and 6.40-8.54%, respectively, in the 2 fish models compared with their corresponding controls (P < 0.05). Accordingly, the adenosine 5'-monophosphate-activated protein kinase/protein kinase B-mechanistic target of rapamycin (AMPK/AKT-mTOR) signaling was significantly activated in the 2 fish models with inhibited mitochondrial FAO (P < 0.05). CONCLUSIONS: These data show that inhibited mitochondrial FAO in fish induces energy homeostasis remodeling and enhances glucose utilization and protein deposition. Therefore, fish with inhibited mitochondrial FAO could have high potential to utilize carbohydrate. Our results demonstrate a potentially new approach for increasing protein deposition through energy homeostasis regulation in cultured animals.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Metilidrazinas/farmacologia , Mitocôndrias/metabolismo , Proteínas/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Ciclídeos , Citocromos b/genética , Citocromos b/metabolismo , DNA , Metabolismo Energético , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Homeostase , Insulina , Masculino , Mutação , Oxirredução , Peixe-Zebra
20.
Chem Pharm Bull (Tokyo) ; 68(3): 244-250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115531

RESUMO

Aspidosperma alkaloids, a subclass of monoterpenoid indole alkaloids rich in the Apocynaceae plants, possess remarkable antitumor activities, but the underlying mechanisms have rarely been reported. In the current project, 11-methoxytabersonine (11-MT), an aspidosperma-type alkaloid isolated from Tabernaemontana bovina, significantly inhibited the viability of two human lung cancer cell lines A549 and H157, and the molecular mechanisms were thus investigated. The results showed that 11-MT killed lung cancer cells via induction of necroptosis in an apoptosis-independent manner. In addition, 11-MT strongly induced autophagy in the two cell lines, which played a protective role against 11-MT-induced necroptosis. Finally, the autophagy caused by 11-MT was found to be via activation of the AMP activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) and the c-Jun N-terminal kinase (JNK) signaling pathways in both cells. Taken together, 11-MT exhibited an antitumor mechanism different from that of previously reported analogues and could have the potential to serve as a lead compound for the development of new chemotherapy for lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Alcaloides Indólicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Monoterpenos/farmacologia , Necroptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Tabernaemontana/química , Células A549 , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Alcaloides Indólicos/isolamento & purificação , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Monoterpenos/isolamento & purificação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA