Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 323: 117620, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38141792

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Buyang Huanwu Decoction (BYHWD), one of the most commonly utilized traditional Chinese medicine prescription for treatment of cerebral ischemic stroke. However, the understanding of BYHWD on neurovascular repair following cerebral ischemia is so far limited. AIM OF THE STUDY: This research investigated the influence of BYHWD on neurovascular remodeling by magnetic resonance imaging (MRI) technology and revealed the potential neurovascular repair mechanism underlying post-treatment with BYHWD after ischemic stroke. MATERIALS AND METHODS: Male Sprague-Dawley rats were utilized as an ischemic stroke model by permanent occlusion of the middle cerebral artery (MCAO). BYHWD was intragastrically administrated once daily for 30 days straight. Multimodal MRI was performed to detect brain tissue injuries, axonal microstructural damages, cerebral blood flow and intracranial vessels on the 30th day after BYHWD treatment. Proangiogenic factors, axonal/synaptic plasticity-related factors, energy transporters and adenosine monophosphate-activated protein kinase (AMPK) signal pathway were evaluated using western blot. Double immunofluorescent staining and western blot were applied to evaluate astrocytes and microglia polarization. RESULTS: Administration of BYHWD significantly alleviated infarct volume and brain tissue injuries and ameliorated microstructural damages, accompanied with improved axonal/synaptic plasticity-related factors, axonal growth guidance factors and decreased axonal growth inhibitors. Meanwhile, BYHWD remarkably improved cerebral blood flow, cerebral vascular signal and promoted the expression of proangiogenic factors. Particularly, treatment with BYHWD obviously suppressed astrocytes A1 and microglia M1 polarization accompanied with promoted astrocyte A2 and microglia M2 polarization. Furthermore, BYHWD effectively improved energy transporters. Especially, BYHWD markedly increased expression of phosphorylated AMPK, cyclic AMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) accompanied by inactivation of the NF-κB. CONCLUSION: Taken together, these findings identified that the beneficial roles of BYHWD on neurovascular remodeling were related to AMPK pathways -mediated energy transporters and NFκB/CREB pathways.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Astrócitos , AVC Isquêmico/tratamento farmacológico , Microglia , Proteínas Quinases Ativadas por AMP , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
2.
J Ethnopharmacol ; 279: 114358, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34166736

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trillium tschonoskii Maxim. is one of traditional Chinese medical herbs that has been utilized to treat brain damages and cephalalgia. The neuroprotective effect of total saponins from Trillium tschonoskii rhizome (TSTT) has been demonstrated efficacy in rats following ischemia. However, the axonal remodeling effect of TSTT and the detailed mechanisms after ischemic stroke have not been investigated. AIM OF THE STUDY: We aimed to estimate therapeutic role of TSTT in axonal remodeling using magnetic resonance imaging (MRI) technique, and explored possible mechanisms underlying this process followed by histological assays in ischemic rats. METHODS: Male Sprague-Dawley (SD) rats underwent permanently focal cerebral ischemia induced by occluding right permanent middle cerebral artery. TSTT was intragastrically administrated 6 h after surgery and once daily for consecutive 15 days. Neurological function was assessed by the motor deficit score and beam walking test. T2 relaxation mapping and diffusion tensor imaging (DTI) were applied for detecting cerebral tissues damages and microstructural integrity of axons. Luxol fast blue (LFB) and transmission electron microscope (TEM) were performed to evaluate histopathology in myelinated axons. Double immunofluorescent staining was conducted to assess oligodendrogenesis. Furthermore, the protein expressions regarding to axonal remodeling related signaling pathways were detected by Western blot assays. RESULTS: TSTT treatment (65, 33 mg/kg) markedly improved motor function after ischemic stroke. T2 mapping MRI demonstrated that TSTT decreased lesion volumes, and DTI further confirmed that TSTT preserved axonal microstructure of the sensorimotor cortex and internal capsule. Meanwhile, diffusion tensor tractography (DTT) showed that TSTT elevated correspondent density and length of fiber in the internal capsule. These MRI measurements were confirmed by histological examinations. Notably, TSTT significantly increased Ki67/NG2, Ki67/CNPase double-labeled cells along the boundary zone of ischemic cortex and striatum. Meanwhile, TSTT treatment up-regulated the phosphorylation level of Ser 9 in GSK-3ß, and down-regulated phosphorylated ß-catenin and CRMP-2 expression. CONCLUSION: Taken together, our findings indicated that TSTT (65, 33 mg/kg) enhanced post-stroke functional recovery, amplified endogenous oligodendrogenesis and promoted axonal regeneration. The beneficial role of TSTT might be correlated with GSK-3/ß-catenin/CRMP-2 modulating axonal reorganization after ischemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Saponinas/farmacologia , Trillium/química , Animais , Axônios/patologia , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glicogênio Sintase Quinase 3 beta/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , AVC Isquêmico/fisiopatologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Rizoma , Saponinas/administração & dosagem , Saponinas/isolamento & purificação , beta Catenina/metabolismo
3.
Front Neurosci ; 13: 701, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354412

RESUMO

Xiaoshuan enteric-coated capsule (XSEC) is a Chinese medicinal compound widely used for treatment of ischemic cerebrovascular diseases. Enriched environment (EE) is an effective rehabilitative protocol designed to enhance sensorimotor, cognitive and social stimulation. This study aimed to apply magnetic resonance imaging (MRI) to non-invasively assess whether EE could augment the therapeutic benefits of XSEC on post-ischemic neurovascular remodeling. Male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAO) and treated with XSEC and EE alone or combination for 30 consecutive days. Beam walking test and Morris water maze (MWM) test were performed to evaluate motor and cognitive function, respectively. Multimodal MRI was applied to examine alterations to brain structures, intracranial vessels, and cerebral perfusion on the 31st day after MCAO. Double-immunofluorescent staining was used to evaluate neurogenesis and angiogenesis. Western blot and RT-PCR were used to detect the expressions of vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), and the axon guidance molecules. Combination therapy with XSEC and EE significantly reduced cystic volume compared with XSEC and EE monotherapies. In line with this, combination treated rats performed better in the beam walking test and exhibited improved spatial memory in the probe trial of the MWM. Moreover, XSEC and EE combination treatment improved cerebral blood flow (CBF), amplified angiogenesis and upregulated VEGF protein levels. This proangiogenic effect was consistent with the increased progenitor cell proliferation and neuronal differentiation in the peri-infarct cortex and striatum. Specifically, the combined therapy of XSEC and EE markedly increased the Netrin-1 and Robo-1 protein expression levels compared with vehicle group, while no difference was observed between XSEC or EE monotherapy and vehicle group. Together, these findings indicate that the combination of XSEC and EE benefits neurovascular reorganization. This correlates with restoration of CBF, promotion of neurogenesis and angiogenesis, and activation of the intrinsic axonal guidance molecules, thereby facilitating greater physical rehabilitation after ischemic stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA