Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(3): 1107-1117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37862262

RESUMO

BACKGROUND: Chlorantraniliprole (CAP) is a diamide insecticide with high efficacy against many pest insects, including the black cutworm, Agrotis ipsilon. Agrotis ipsilon is a serious pest causing significant yield losses in crops. Glutathione-S-transferases (GSTs) belong to a family of metabolic enzymes that can detoxify a wide range of pesticides. However, little is known about the functions of GSTs in CAP tolerance in A. ipsilon. RESULTS: A cDNA sequence (designated AiGSTu1) encoding an unclassified GST was identified from A. ipsilon. AiGSTu1 is highly expressed during the 3rd -instar larval and the pupal stages. Most of the mRNA transcripts were found in larval Malpighian tubules. Exposure to CAP strongly enhanced AiGSTu1 expression, GST activity, hydrogen peroxide (H2 O2 ) and malondialdehyde levels in larvae. H2 O2 treatment upregulated the transcription level of AiGSTu1, suggesting that CAP-induced oxidative stress may activate AiGSTu1 expression. The activity of recombinant AiGSTu1 was inhibited by CAP in a dose-dependent manner. Metabolism assay results demonstrated that AiGSTu1 is capable of depleting CAP. Overexpression of AiGSTu1 enhanced the tolerance of Escherichia coli cells to H2 O2 and the oxidative stress inducer, cumene hydroperoxide. Silencing of AiGSTu1 by RNA interference increased the susceptibility of A. ipsilon larvae to CAP. CONCLUSION: The findings of this study provide valuable insights into the potential role of AiGSTu1 in CAP detoxification and will improve our understanding of CAP tolerance in A. ipsilon. © 2023 Society of Chemical Industry.


Assuntos
Glutationa Transferase , Mariposas , ortoaminobenzoatos , Animais , Mariposas/genética , Larva , Glutationa
2.
Pestic Biochem Physiol ; 193: 105425, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248003

RESUMO

In insects, glutathione S-transferases (GSTs) play a pivotal role in the detoxification of a wide range of pesticides. The cigarette beetle, Lasioderma serricorne, is an economically important pest insect of stored products. Recently, pyrethroid insecticides have been used to control this pest. However, little is known concerning the responses and functions of GSTs in L. serricorne under pyrethroid exposure. In this study, transcriptome sequencing was performed on L. serricorne, and a total of 14 GSTs were identified by retrieving the unigene dataset. Of these, 13 predicted GSTs fell into six cytosolic classes, namely, delta, epsilon, omega, sigma, theta, and zeta, and one was assigned to an "unclassified" group. The GST genes were differentially expressed in various larval tissues and at different developmental stages. Exposure to the pyrethroid insecticide lambda-cyhalothrin (LCT) caused oxidative stress in L. serricorne larvae and led to significantly elevated expression levels of six genes, among which LsGSTe1 was the most upregulated. Recombinant LsGSTE1 protein displayed LCT-metabolizing activity. Furthermore, LsGSTE1 protects cells against oxidative stress. Moreover, knockdown of LsGSTe1 by RNA interference dramatically increased the susceptibility of L. serricorne larvae to LCT treatment. The results from this study provide sequence resources and expression data for GST genes in L. serricorne. Our findings indicate that LsGSTE1 plays a dual role in LCT detoxification by metabolizing the pesticide and by preventing LCT-induced oxidative stress. Thus, the LsGSTe1 gene could be used as a potential target for sustainable management of the cigarette beetle.


Assuntos
Besouros , Inseticidas , Praguicidas , Piretrinas , Animais , Inseticidas/toxicidade , Inseticidas/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Piretrinas/toxicidade , Piretrinas/metabolismo , Besouros/genética , Besouros/metabolismo , Larva/genética , Larva/metabolismo
3.
J Insect Sci ; 20(5)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32889524

RESUMO

The small white butterfly, Pieris rapae (L.), is an important insect pest of Brassica crops. This species utilize olfactory cues to find their hosts and mates. However, the molecular mechanism underlying the olfactory perception in this species remains unclear. Here, we identified 14 odorant-binding proteins (OBP) genes-essential for insect olfaction-in P. rapae by exploring a previously published transcriptome dataset. Proteins encoded by all of these genes contain N-terminal signal peptides and six positionally conserved cysteine residues, which are characteristic of insect OBPs. These OBPs displayed high amino acid identity with their respective orthologs in other lepidopterans, and several conserved motifs were identified within these OBPs. Phylogenetic analysis showed that these OBPs were well segregated from each other and clustered into different branches. PrapOBP1 and PrapOBP2 were clustered into the 'general odorant-binding protein' clade, and PrapOBP3 and PrapOBP4 fall into the 'pheromone-binding protein' clade. The 14 OBP genes were located on seven genomic scaffolds. Of these, PrapOBP1, 2, 3, and 4 were located on scaffold332, whereas PrapOBP5, 6, 7, 8, and 9 were located on scaffold116. Ten of the 14 genes had antenna-biased expression. Of these, PrapOBP1, 2, 4, and 13 were enriched in male antennae, whereas PrapOBP7 and PrapOBP10 were female-biased. Our findings suggest that these OBPs may be involved in olfactory communication. To the best of our knowledge, this is the first report on the identification and characterization of OBPs in P. rapae, and our findings provide a solid foundation for studying the functions of these genes.


Assuntos
Borboletas/genética , Proteínas de Insetos/genética , Receptores Odorantes/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Borboletas/metabolismo , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Masculino , Filogenia , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Alinhamento de Sequência
4.
Arch Insect Biochem Physiol ; 103(1): e21626, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31562754

RESUMO

Insects can produce various antimicrobial peptides (AMPs) upon immune stimulation. One class of AMPs are characterized by their high proline content in certain fragments. They are generally called proline-rich antimicrobial peptides (PrAMPs). We previously reported the characterization of Spodoptera litura lebocin-1 (SlLeb-1), a PrAMP proprotein. Preliminary studies with synthetic polypeptides showed that among the four deductive active fragments, the C-terminal fragment SlLeb-1 (124-158) showed strong antibacterial activities. Here, we further characterized the antibacterial and antifungal activities of 124-158 and its four subfragments: 124-155, 124-149, 127-158, and 135-158. Only 124-158 and 127-158 could agglutinate bacteria, while 124-158 and four subfragments all could agglutinate Beauveria bassiana spores. Confocal microscopy showed that fluorescent peptides were located on the microbial surface. Fragment 135-158 lost activity completely against Escherichia coli and Staphylococcus aureus, and partially against Bacillus subtilis. Only 124-149 showed low activity against Serratia marcescens. Negative staining, transmission, and scanning electron microscopy of 124-158 treated bacteria showed different morphologies. Flow cytometry analysis of S. aureus showed that 124-158 and four subfragments changed bacterial subpopulations and caused an increase of DNA content. These results indicate that active fragments of SlLeb-1 may have diverse antimicrobial effects against different microbes. This study may provide an insight into the development of novel antimicrobial agents.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Insetos/farmacologia , Spodoptera/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Bacillus subtilis/efeitos dos fármacos , Beauveria/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Proteínas de Insetos/química , Serratia marcescens/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA