Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 194(4): 2755-2770, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38235781

RESUMO

Apple Valsa canker (AVC) is a devastating disease of apple (Malus × domestica), caused by Valsa mali (Vm). The Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1 (CAP) superfamily protein PATHOGENESIS-RELATED PROTEIN 1-LIKE PROTEIN c (VmPR1c) plays an important role in the pathogenicity of Vm. However, the mechanisms through which it exerts its virulence function in Vm-apple interactions remain unclear. In this study, we identified an apple valine-glutamine (VQ)-motif-containing protein, MdVQ29, as a VmPR1c target protein. MdVQ29-overexpressing transgenic apple plants showed substantially enhanced AVC resistance as compared with the wild type. MdVQ29 interacted with the transcription factor MdWRKY23, which was further shown to bind to the promoter of the jasmonic acid (JA) signaling-related gene CORONATINE INSENSITIVE 1 (MdCOI1) and activate its expression to activate the JA signaling pathway. Disease evaluation in lesion areas on infected leaves showed that MdVQ29 positively modulated apple resistance in a MdWRKY23-dependent manner. Furthermore, MdVQ29 promoted the transcriptional activity of MdWRKY23 toward MdCOI1. In addition, VmPR1c suppressed the MdVQ29-enhanced transcriptional activation activity of MdWRKY23 by promoting the degradation of MdVQ29 and inhibiting MdVQ29 expression and the MdVQ29-MdWRKY23 interaction, thereby interfering with the JA signaling pathway and facilitating Vm infection. Overall, our results demonstrate that VmPR1c targets MdVQ29 to manipulate the JA signaling pathway to regulate immunity. Thus, this study provides an important theoretical basis and guidance for mining and utilizing disease-resistance genetic resources for genetically improving apples.


Assuntos
Ascomicetos , Ciclopentanos , Malus , Oxilipinas , Malus/genética , Malus/metabolismo , Glutamina/metabolismo , Valina/metabolismo , Transdução de Sinais , Doenças das Plantas/genética
2.
Biochem Biophys Res Commun ; 598: 32-39, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35151201

RESUMO

Alveolar macrophage activation and apoptosis are vital contributors to sepsis-associated acute lung injury (ALI). However, the mechanisms of alveolar macrophage activation are yet to be clarified. Death-associated protein kinase 1 (DAPK1) is one of the potential candidates that play crucial roles in regulating alveolar macrophage inflammation. Herein, we found that primary human bone mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) antagonize LPS-induced inflammation in the THP-1 human macrophage-like cell line. Mechanistically, LPS stimulation elevates the expression of DAPK1 and the inflammation markers in THP-1 cells, while BMSC-derived EVs inhibit the expression of DAPK1 and inflammation through delivering miR-191, which can target the 3'-UTR of the DAPK1 mRNA and therefore suppress its translation. The importance of DAPK1 in the activation of THP-1 is also stressed in this study. Our findings provide evidence that BMSC-derived EVs regulate the alveolar macrophage inflammation and highlight BMSC-derived EVs as a potential vehicle to deliver biomacromolecules to macrophages.


Assuntos
Proteínas Quinases Associadas com Morte Celular/genética , Vesículas Extracelulares/genética , Inflamação/etiologia , Ativação de Macrófagos/fisiologia , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Regiões 3' não Traduzidas , Meios de Cultivo Condicionados/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/genética , MicroRNAs/farmacologia , Regiões Promotoras Genéticas , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA