Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 283: 116985, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39217894

RESUMO

Cigarette smoke, a complex mixture produced by tobacco combustion, contains a variety of carcinogens and can trigger DNA damage. Overactivation of c-MET, a receptor tyrosine kinase, may cause cancer and cellular DNA damage, but the underlying mechanisms are unknown. In this work, we investigated the mechanisms of cigarette smoke extract (CSE) induced malignant transformation and DNA damage in human bronchial epithelial cells (BEAS-2B). The results demonstrated that CSE treatment led to up-regulated mRNA expression of genes associated with the c-MET signaling pathway, increased expression of the DNA damage sensor protein γ-H2AX, and uncontrolled proliferation in BEAS-2B cells. ATR, ATR, and CHK2, which are involved in DNA damage repair, as well as the phosphorylation of c-MET and a group of kinases (ATM, ATR, CHK1, CHK2) involved in the DNA damage response were all activated by CSE. In addition, CSE activation promotes the phosphorylation modification of ATR, CHK1 proteins associated with DNA damage repair. The addition of PHA665752, a specific inhibitor of c-MET, or knock-down with c-MET both attenuated DNA damage, while overexpression of c-MET exacerbated DNA damage. Thus, c-MET phosphorylation may be involved in CSE-induced DNA damage, providing a potential target for intervention in the prevention and treatment of smoking-induced lung diseases.


Assuntos
Brônquios , Dano ao DNA , Células Epiteliais , Nicotiana , Proteínas Proto-Oncogênicas c-met , Fumaça , Humanos , Proteínas Proto-Oncogênicas c-met/metabolismo , Fosforilação/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Brônquios/citologia , Fumaça/efeitos adversos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Produtos do Tabaco
2.
Curr Protein Pept Sci ; 25(6): 480-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38284716

RESUMO

BACKGROUND: It has been proven that vasoactive intestinal peptide (VIP) was involved in the pathogenesis of prostate cancer. Cardin et al. found that by an alanine scan, the heparin- binding site on VIP was exactly the same sequence in VIP and its receptor. Therefore, heparin could competitively block the binding of VIP and its receptor. However, the structure-activity relationship between heparin and VIP has not been reported, especially in terms of the sequence and sulfation patterns of heparin oligosaccharides upon binding to VIP. OBJECTIVE: A variety of experiments were designed to study the binding process and structure-activity relationship between heparin oligosaccharides and VIP. METHODS: Heparin was enzymatically digested and purified to produce heparin oligosaccharides, and the structures were characterized by NMR. The binding capacity between heparin oligosaccharides and VIP was analyzed by GMSA and ITC experiments. The binding between heparin oligosaccharides and VIP was simulated using a molecular docking program to show the complex. ELISA assay was used to investigate the effect of non-anticoagulant heparin oligosaccharides on the VIP-mediated cAMP/PKA signaling pathway in vitro. RESULTS: The results indicated that both the length and the sulfation pattern of heparin oligosaccharides affected its binding to VIP. VIP could induce the expression of cAMP at a higher level in PC3 cells, which could be regulated by the interaction of heparin oligosaccharides and VIP. CONCLUSION: The binding between heparin oligosaccharides and VIP could block the binding between VIP and its receptor on tumor cells. Downloading the regulation of the expression level of cAMP could possibly further affect the subsequent activation of PKA. These non-anticoagulant heparin oligosaccharides may block the VIP-mediated cAMP/PKA signaling pathway and thus exert their antitumor activity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Heparina , Simulação de Acoplamento Molecular , Oligossacarídeos , Ligação Proteica , Transdução de Sinais , Peptídeo Intestinal Vasoativo , Heparina/metabolismo , Heparina/química , Heparina/farmacologia , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Humanos , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/química , AMP Cíclico/metabolismo , Sítios de Ligação , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Estrutura-Atividade , Masculino , Linhagem Celular Tumoral , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia
3.
Nat Commun ; 14(1): 5179, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620316

RESUMO

Cancer-associated cachexia is a multi-organ weight loss syndrome, especially with a wasting disorder of adipose tissue and skeletal muscle. Small extracellular vesicles (sEVs) serve as emerging messengers to connect primary tumour and metabolic organs to exert systemic regulation. However, whether and how tumour-derived sEVs regulate white adipose tissue (WAT) browning and fat loss is poorly defined. Here, we report breast cancer cell-secreted exosomal miR-204-5p induces hypoxia-inducible factor 1A (HIF1A) in WAT by targeting von Hippel-Lindau (VHL) gene. Elevated HIF1A protein induces the leptin signalling pathway and thereby enhances lipolysis in WAT. Additionally, exogenous VHL expression blocks the effect of exosomal miR-204-5p on WAT browning. Reduced plasma phosphatidyl ethanolamine level is detected in mice lack of cancer-derived miR-204-5p secretion in vivo. Collectively, our study reveals circulating miR-204-5p induces hypoxia-mediated leptin signalling pathway to promote lipolysis and WAT browning, shedding light on both preventive screenings and early intervention for cancer-associated cachexia.


Assuntos
Tecido Adiposo Branco , Leptina , MicroRNAs , Neoplasias , Animais , Camundongos , Tecido Adiposo Branco/metabolismo , Caquexia/genética , Hipóxia , MicroRNAs/genética
4.
Cell Death Dis ; 14(8): 492, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532694

RESUMO

Metabolic heterogeneity of tumor microenvironment (TME) is a hallmark of cancer and a big barrier to cancer treatment. Cancer cells display diverse capacities to utilize alternative carbon sources, including nucleotides, under poor nutrient circumstances. However, whether and how purine, especially inosine, regulates mitochondrial metabolism to buffer nutrient starvation has not been well-defined yet. Here, we identify the induction of 5'-nucleotidase, cytosolic II (NT5C2) gene expression promotes inosine accumulation and maintains cancer cell survival in the nutrient-poor region. Inosine elevation further induces Rag GTPases abundance and mTORC1 signaling pathway by enhancing transcription factor SP1 level in the starved tumor. Besides, inosine supplementary stimulates the synthesis of nascent TCA cycle enzymes, including citrate synthesis (CS) and aconitase 1 (ACO1), to further enhance oxidative phosphorylation of breast cancer cells under glucose starvation, leading to the accumulation of iso-citric acid. Inhibition of the CS activity or knockdown of ACO1 blocks the rescue effect of inosine on cancer survival under starvation. Collectively, our finding highlights the vital signal role of inosine linking mitochondrial respiration and buffering starvation, beyond serving as direct energy carriers or building blocks for genetic code in TME, shedding light on future cancer treatment by targeting inosine metabolism.


Assuntos
GTP Fosfo-Hidrolases , Inosina , GTP Fosfo-Hidrolases/metabolismo , Inosina/metabolismo , Fosforilação Oxidativa , Nutrientes , Respiração
5.
J Med Chem ; 63(9): 4908-4928, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32321253

RESUMO

3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is an eight-pass transmembrane protein in the endoplasmic reticulum (ER) and a classical drug target to treat dyslipidemia. Statins including the well-known atorvastatin (Lipitor; Pfizer) have been widely used for the prevention and treatment of cardiovascular disease for decades. However, statins can elicit a compensatory upregulation of HMGCR protein and cause adverse effects including skeletal muscle damage. They are ineffective for patients with statin intolerance. Inspired by the recently emerging proteolysis-targeting chimeras (PROTACs), we set out to eliminate HMGCR protein using PROTAC-mediated degradation. One PROTAC designated as P22A was found to reduce HMGCR protein level and block cholesterol biosynthesis potently with less compensatory upregulation of HMGCR. To the best of our knowledge, HMGCR is the first ER-localized, polytopic transmembrane protein successfully degraded by the PROTAC technique. This finding may provide a new strategy to lower cholesterol levels and treat the associated diseases.


Assuntos
Atorvastatina/análogos & derivados , Atorvastatina/farmacologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Proteólise/efeitos dos fármacos , Talidomida/análogos & derivados , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Colesterol/metabolismo , Cricetulus , Desenho de Fármacos , Humanos , Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/síntese química , Estrutura Molecular , Relação Estrutura-Atividade , Talidomida/síntese química , Talidomida/farmacologia , Ubiquitina-Proteína Ligases
6.
Nat Microbiol ; 5(5): 706-714, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32094588

RESUMO

The arms race among microorganisms is a key driver in the evolution of not only the weapons but also defence mechanisms. Many Gram-negative bacteria use the type six secretion system (T6SS) to deliver toxic effectors directly into neighbouring cells. Defence against effectors requires cognate immunity proteins. However, here we show immunity-independent protection mediated by envelope stress responses in Escherichia coli and Vibrio cholerae against a V. cholerae T6SS effector, TseH. We demonstrate that TseH is a PAAR-dependent species-specific effector highly potent against Aeromonas species but not against its V. cholerae immunity mutant or E. coli. A structural analysis reveals TseH is probably a NlpC/P60-family cysteine endopeptidase. We determine that two envelope stress-response pathways, Rcs and BaeSR, protect E. coli from TseH toxicity by mechanisms including capsule synthesis. The two-component system WigKR (VxrAB) is critical for protecting V. cholerae from its own T6SS despite expressing immunity genes. WigR also regulates T6SS expression, suggesting a dual role in attack and defence. This deepens our understanding of how bacteria survive T6SS attacks and suggests that defence against the T6SS represents a major selective pressure driving the evolution of species-specific effectors and protective mechanisms mediated by envelope stress responses and capsule synthesis.


Assuntos
Imunidade , Sistemas de Secreção Tipo VI/imunologia , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Imunidade/genética , Modelos Moleculares , Conformação Proteica , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulência/genética
7.
Nat Commun ; 11(1): 379, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953408

RESUMO

Insig-2 is an ER membrane protein negatively controlling lipid biosynthesis. Here, we find that Insig-2 is increased in the tissues, including liver, but unaltered in the muscle of gp78-deficient mice. In hepatocytes and undifferentiated C2C12 myoblasts, Insig-2 is ubiquitylated on Cys215 by gp78 and degraded. However, the C215 residue is oxidized by elevated reactive oxygen species (ROS) during C2C12 myoblasts differentiating into myotubes, preventing Insig-2 from ubiquitylation and degradation. The stabilized Insig-2 downregulates lipogenesis through inhibiting the SREBP pathway, helping to channel the carbon flux to ATP generation and protecting myotubes from lipid over-accumulation. Evolutionary analysis shows that the YECK (in which C represents Cys215 in human Insig-2) tetrapeptide sequence in Insig-2 is highly conserved in amniotes but not in aquatic amphibians and fishes, suggesting it may have been shaped by differential selection. Together, this study suggests that competitive oxidation-ubiquitylation on Cys215 of Insig-2 senses ROS and prevents muscle cells from lipid accumulation.


Assuntos
Cisteína/metabolismo , Proteínas de Membrana/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo , Ubiquitinação , Anfíbios , Animais , Células CHO , Linhagem Celular , Cricetulus , Regulação para Baixo , Evolução Molecular , Peixes , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipogênese , Fígado/metabolismo , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Receptores do Fator Autócrino de Motilidade/genética , Análise de Sequência de Proteína , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA