Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.148
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1356158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707505

RESUMO

Introduction: Silicon is a major trace element in humans and a prospective supporting biomaterial to bone regeneration. Submicron silicon pillars, as a representative surface topography of silicon-based biomaterials, can regulate macrophage and osteoblastic cell responses. However, the design of submicron silicon pillars for promoting bone regeneration still needs to be optimized. In this study, we proposed a submicron forest-like (Fore) silicon surface (Fore) based on photoetching. The smooth (Smo) silicon surface and photoetched regular (Regu) silicon pillar surface were used for comparison in the bone regeneration evaluation. Methods: Surface parameters were investigated using a field emission scanning electron microscope, atomic force microscope, and contact angle instrument. The regulatory effect of macrophage polarization and succedent osteogenesis was studied using Raw264.7, MC3T3-E1, and rBMSCs. Finally, a mouse calvarial defect model was used for evaluating the promoting effect of bone regeneration on the three surfaces. Results: The results showed that the Fore surface can increase the expression of M2-polarized markers (CD163 and CD206) and decrease the expression of inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Fore surface can promote the osteogenesis in MC3T3-E1 cells and osteoblastic differentiation of rBMSCs. Furthermore, the volume fraction of new bone and the thickness of trabeculae on the Fore surface were significantly increased, and the expression of RANKL was downregulated. In summary, the upregulation of macrophage M2 polarization on the Fore surface contributed to enhanced osteogenesis in vitro and accelerated bone regeneration in vivo. Discussion: This study strengthens our understanding of the topographic design for developing future silicon-based biomaterials.

2.
Adv Sci (Weinh) ; : e2403858, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704691

RESUMO

Cancer immunotherapy has demonstrated significant efficacy in various tumors, but its effectiveness in treating Hepatocellular Carcinoma (HCC) remains limited. Therefore, there is an urgent need to identify a new immunotherapy target and develop corresponding intervention strategies. Bioinformatics analysis has revealed that growth differentiation factor 15 (GDF15) is highly expressed in HCC and is closely related to poor prognosis of HCC patients. The previous study revealed that GDF15 can promote immunosuppression in the tumor microenvironment. Therefore, knocking out GDF15 through gene editing could potentially reverse the suppressive tumor immune microenvironment permanently. To deliver the CRISPR/Cas9 system specifically to HCC, nanocapsules (SNC) coated with HCC targeting peptides (SP94) on their surface is utilized. These nanocapsules incorporate disulfide bonds (SNCSS) that release their contents in the tumor microenvironment characterized by high levels of glutathione (GSH). In vivo, the SNCSS target HCC cells, exert a marked inhibitory effect on HCC progression, and promote HCC immunotherapy. Mechanistically, CyTOF analysis showed favorable changes in the immune microenvironment of HCC, immunocytes with killer function increased and immunocytes with inhibitive function decreased. These findings highlight the potential of the CRISPR-Cas9 gene editing system in modulating the immune microenvironment and improving the effectiveness of existing immunotherapy approaches for HCC.

3.
Transl Oncol ; 45: 101993, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38743988

RESUMO

BACKGROUND: To construct and validate the CT-based radiomics model for predicting the tyrosine kinase inhibitors (TKIs) effects in osteosarcoma (OS) patients with pulmonary metastasis. METHODS: OS patients with pulmonary metastasis treated with TKIs were randomly separated into training and testing cohorts (2:1 ratio). Radiomic features were extracted from the baseline unenhanced chest CT images. The random survival forest (RSF) and Kaplan-Meier survival analyses were performed to construct and evaluate radiomics signatures (R-model-derived). The univariant and multivariant Cox regression analyses were conducted to establish clinical (C-model) and combined models (RC-model). The discrimination abilities, goodness of fit and clinical benefits of the three models were assessed and validated in both training and testing cohorts. RESULTS: A total of 90 patients, 57 men and 33 women, with a mean age of 18 years and median progression-free survival (PFS) of 7.2 months, were enrolled. The R-model was developed with nine radiomic features and demonstrated significant predictive and prognostic values. In both training and testing cohorts, the time-dependent area under the receiver operating characteristic curves (AUC) of the R-model and RC-model exhibited obvious superiority over C-model. The calibration and decision curve analysis (DCA) curves indicated that the accuracy of the R-model was comparable to RC-model, which exhibited significantly better performance than C-model. CONCLUSIONS: The R-model showed promising potential as a predictor for TKI responses in OS patients with pulmonary metastasis. It can potentially identify pulmonary metastatic OS patients most likely to benefit from TKIs treatment and help guide optimized clinical decisions.

4.
BMC Gastroenterol ; 24(1): 161, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741060

RESUMO

BACKGROUND AND AIMS: Portal vein thrombosis (PVT) is a common complication of liver cirrhosis that can aggravate portal hypertension. However, there are features of both PVT and cirrhosis that are not recapitulated in most current animal models. In this study, we aimed to establish a stable animal model of PVT and cirrhosis, intervene with anticoagulant, and explore the related mechanism. METHODS: First, 49 male SD rats received partial portal vein ligation (PPVL), and 44 survival rats were divided into 6 groups: PPVL control group; 4-week, 6 -week, 8-week, and 10-week model group; and the rivaroxaban (RIVA)-treated group. The rats were intoxicated with or without carbon tetrachloride (CCl4) for 4-10 weeks. Seven normal rats were used as the normal controls. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and parameters for blood coagulation were all assayed with kits. Liver inflammation, collagen deposition and hydroxyproline (Hyp) levels were also measured. The extrahepatic macro-PVT was observed via portal vein HE staining, etc. The intrahepatic microthrombi was stained via fibrin immunohistochemistry. The portal blood flow velocity (PBFV) and diameter were detected via color Doppler ultrasound. Vascular endothelial injury was evaluated by von Willebrand Factor (vWF) immunofluorescence. Fibrinolytic activity was estimated by western blot analysis of fibrin and plasminogen activator inhibitor-1 (PAI-1). RESULTS: After PPVL surgery and 10 weeks of CCl4 intoxication, a rat model that exhibited characteristics of both cirrhosis and extra and intrahepatic thrombi was established. In cirrhotic rats with PVT, the PBFV decreased, both factors of pro- and anti-coagulation decreased, but with relative hypercoagulable state, vascular endothelial injured, and fibrinolytic activity decreased. RIVA-treated rats had improved coagulation function, increased PBFV and attenuated thrombi. This effect was related to the improvements in endothelial injury and fibrinolytic activity. CONCLUSIONS: A new rat model of PVT with cirrhosis was established through partial portal vein ligation plus CCl4 intoxication, with the characteristics of macrothrombi at portal veins and microthrombi in hepatic sinusoids, as well as liver cirrhosis. Rivaroxaban could attenuate PVT in cirrhosis in the model rats. The underlying mechanisms of PVT formation in the rat model and pharmacological action of rivaroxaban are related to the regulation of portal blood flow, coagulant factors, and vascular endothelial cell function.


Assuntos
Tetracloreto de Carbono , Modelos Animais de Doenças , Inibidores do Fator Xa , Veia Porta , Ratos Sprague-Dawley , Rivaroxabana , Trombose Venosa , Animais , Rivaroxabana/farmacologia , Masculino , Ligadura , Trombose Venosa/etiologia , Trombose Venosa/tratamento farmacológico , Ratos , Inibidores do Fator Xa/farmacologia , Cirrose Hepática/complicações , Cirrose Hepática Experimental/complicações , Fígado/metabolismo , Fígado/irrigação sanguínea , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue
5.
Sci Transl Med ; 16(746): eadk4728, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718131

RESUMO

Group 2 innate lymphoid cells (ILC2s) rapidly induce a type 2 inflammation in the lungs in response to allergens. Here, we focused on the role of iron, a critical nutritional trace element, on ILC2 function and asthma pathogenesis. We found that transferrin receptor 1 (TfR1) is rapidly up-regulated and functional during ILC2 activation in the lungs, and blocking transferrin uptake reduces ILC2 expansion and activation. Iron deprivation reprogrammed ILC2 metabolism, inducing a HIF-1α-driven up-regulation of glycolysis and inhibition of oxidative mitochondrial activity. Consequently, we observed that in vivo iron chelation or induction of hypoferremia reduced the development of airway hyperreactivity in experimental models of ILC2-driven allergic asthma. Human circulating ILC2s rapidly induced TfR1 during activation, whereas inhibition of iron uptake or iron deprivation reduced effector functions. Last, we found a negative relationship between circulating ILC2 TfR1 expression and airway function in cohorts of patients with asthma. Collectively, our studies define cellular iron as a critical regulator of ILC2 function.


Assuntos
Asma , Ferro , Linfócitos , Receptores da Transferrina , Receptores da Transferrina/metabolismo , Ferro/metabolismo , Animais , Linfócitos/metabolismo , Humanos , Asma/imunologia , Asma/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Imunidade Inata , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
6.
Ecotoxicol Environ Saf ; 278: 116400, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718725

RESUMO

Evidence increasingly suggests molybdenum exposure at environmental levels is still associated with adverse human health, emphasizing the necessity to establish a more protective reference dose (RfD). Herein, we conducted a study measuring 15 urinary metals and 30 clinical health indicators in 2267 participants residing near chemical enterprises across 11 Chinese provinces to investigate their relationships. The kidney and cystatin-C emerged as the most sensitive organ and critical effect indicator of molybdenum exposure, respectively. Odds of cystatin-C-defined chronic kidney disease (CKD) in the highest quantile of molybdenum exposure significantly increased by 133.5% (odds ratio [OR]: 2.34, 95% CI: 1.78, 3.11) and 75.8% (OR: 1.76, 95% CI: 1.24, 2.49) before and after adjusting for urinary 14 metals, respectively. Intriguingly, cystatin-C significantly mediated 15.9-89.5% of molybdenum's impacts on liver and lung function, suggesting nephrotoxicity from molybdenum exposure may trigger hepatotoxicity and pulmonary toxicity. We derived a new RfD for molybdenum exposure (0.87 µg/kg-day) based on cystatin-C-defined estimated glomerular filtration rate by employing Bayesian Benchmark Dose modeling analysis. This RfD is significantly lower than current exposure guidance values (5-30 µg/kg-day). Remarkably, >90% of participants exceeded the new RfD, underscoring the significant health impacts of environmental molybdenum exposure on populations in industrial regions of China.

7.
Quant Imaging Med Surg ; 14(5): 3289-3301, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38720846

RESUMO

Background: The blood volume of intraparenchymal vessels is reported to be increased in smokers. However, the blood volume can be affected by many confounders besides tobacco exposure. This study aimed to investigate the association between cigarette smoking and pulmonary blood volume after adjusting the related factors in a large cohort of Chinese males. Methods: In this retrospective study, male participants admitted to the First Affiliated Hospital of Xi'an Jiaotong University for annual health assessment between February 2017 and February 2018 were enrolled. All subjects underwent non-contrast chest computed tomography (CT) scans, and 152 subjects underwent a review CT scan 2-3 years later. A three-dimensional approach was employed to segment the lung and intrapulmonary vessels and quantitative CT (QCT) measurements, including lung volume (LV), intrapulmonary vessel volume (IPVV), low-attenuation area <-950 Hounsfield unit (LAA-950 and LAA-950%), and mean lung density (MLD). Linear regression was used to estimate the association between IPVV and the smoking index (SI). A paired t-test was used to compare the QCT parameters between the initial and follow-up CT scans. Results: A total of 656 male participants were enrolled and classified into three subgroups: non-smokers (n=311), current smokers (n=267), and former smokers (n=78). The IPVV of current smokers (134.62±23.96 vs. 120.76±25.52 mL) and former smokers (130.79±25.13 vs. 120.76±25.52 mL) were significantly larger than that of non-smokers (P<0.05). A higher SI was associated with greater IPVV [non-standardized coefficient: 0.167, 95% confidence interval (CI): 0.086-0.248]. For current smokers, the IPVV of the follow-up scan significantly increased compared to its baseline scan (135.49±28.60 vs. 129.73±29.75 mL, t=-2.326, P=0.02), but for the non-smokers and former smokers, the IPVV of the follow-up scan did not increase or decrease compared to the baseline scan (P>0.05). Conclusions: Pulmonary vascular volumes detectable on non-contrast CT are associated with cigarette exposure, and smoking cessation may prevent pulmonary vasculature remodeling.

8.
Surg Open Sci ; 19: 146-157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38721524

RESUMO

Background: Pelvic fractures in trauma patients can be associated with substantial massive hemorrhage. Hemostasis interventions mainly consist of pelvic packing (PP) and endovascular intervention (EI), such as angiography-embolization (AE) and resuscitative endovascular balloon occlusion of the aorta (REBOA). Whether PP or EI should be prioritized for the management of hemodynamic unstable patients with pelvic fractures remains under debate. This meta-analysis aimed to establish the evidence-based recommendations for the management of hemodynamic unstable patients. Materials and methods: PubMed, CENTRAL, and EMBASE databases were searched for articles published from January 1, 2000 to January 31, 2023. Eligible studies, such as retrospective cohort studies, propensity score matching studies, prospective cohort studies, observational cohort studies, quasi-randomized clinical trials evaluating PP and EI (AE or REBOA) for the management of patients with hemodynamically unstable pelvic fractures, were included. Mean Difference (MD), relative risk (RR), and 95 % confidence intervals (CI) were calculated using fixed- or random-effects models depending on the heterogeneity of included trials. We compared the effectiveness of the two methods in terms of mortality, unstable fracture pattens, injury severity score (ISS), systolic blood pressure (SBP), lactate (LA), base deficiency (BE), hemoglobin preoperatively, blood transfusion requirement, the time to and of operation, complications. Results: Overall, 15 trials enrolling 1136 patients were analyzed, showing a total mortality rate of 28.4 % (323/1136). No effect of PP preference on the ISS (PP 36.4 ± 10.4 vs. EI 34.5 ± 12.7), SBP (PP 81.1 ± 24.3 mmHg vs. EI 94.2 ± 32.4 mmHg), LA (PP 4.66 ± 2.72 mmol/L vs. 4.85 ± 3.45 mmol/L), BE (PP 8.14 ± 5.64 mmol/L vs. 6.66 ± 5.68 mmol/L), and unstable fracture patterns (RR = 1.10, 95 % CI [0.63, 1.92]) was observed. PP application was associated with lower preoperative hemoglobin level (PP 8.11 ± 2.28 g/dL vs. EI 8.43 ± 2.43 g/dL, p < 0.05), more preoperative transfusion (MD = 2.53, 95 % CI [0.01, 5.06]), less postoperative transfusion within the first 24 h (MD = -1.09, 95 % CI [-1.96, -0.22]), shorter waiting time to intervention (MD = -0.93, 95 % CI [-1.54, -0.31]), and shorter operation time of intervention (MD = -0.41, 95 % CI [-0.52, -0.30]). PP had lower mortality rate owing to uncontrolled hemorrhage in the acute phase (RR = 0.41, 95 % CI [0.22, 0.79]). There was neither difference in mortality due to other complications (RR = 1.60, 95 % CI [0.79, 3.24]), nor in total mortality (RR = 0.92, 95%CI [0.49, 1.74]) (p > 0.05). Conclusions: PP showed advantages of reducing the amount of postoperative transfusion, shortening the time of waiting and operating, and decreasing mortality due to uncontrolled hemorrhage in the acute phase without raising the odds of mortality due to complications. PP, a reliable hemostatic method, should be prioritized for resuscitating most pelvic fractures with hemodynamically unstable, especially in case of bleeding from veins and fracture sites, as well as inadequate EI.

9.
Angew Chem Int Ed Engl ; : e202405639, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708791

RESUMO

The high level of lactate in tumor microenvironment not only promotes tumor development and metastasis, but also induces immune escape, which often leads to failures of various tumor therapy strategies. We here report a sono-triggered cascade lactate depletion strategy by using semiconducting polymer nanoreactors (SPNLCu) for cancer cuproptosis-immunotherapy. The SPNLCu mainly contain a semiconducting polymer as sonosensitizer, lactate oxidase (LOx) conjugated via a reactive oxygen species (ROS)-cleavable linker and chelated Cu2+. Upon ultrasound (US) irradiation, the semiconducting polymer generates singlet oxygen (1O2) to cut ROS-cleavable linker to allow the release of LOx that catalyzes lactate depletion to produce hydrogen peroxide (H2O2). The Cu2+ will be reduced to Cu+ in tumor microenvironment, which reacts with the produced H2O2 to obtain hydroxyl radical (·OH) that further improves LOx release via destroying ROS-cleavable linkers. As such, sono-triggered cascade release of LOx achieves effective lactate depletion, thus relieving immunosuppressive roles of lactate. Moreover, the toxic Cu+ induces cuproptosis to cause immunogenic cell death (ICD) for activating antitumor immunological effect. SPNLCu are used to treat both subcutaneous and deep-tissue orthotopic pancreatic cancer with observably enhanced efficacy in restricting the tumor growths. This study thus provides a precise and effective lactate depletion tactic for cancer therapy.

10.
Chem Sci ; 15(17): 6421-6431, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699264

RESUMO

Photodynamic immunotherapy (PDI) is an innovative approach to cancer treatment that utilizes photodynamic therapy (PDT) and photosensitizers (PSs) to induce immunogenic cell death (ICD). However, currently most commonly used PSs have restricted capabilities to generate reactive oxygen species (ROS) via a type-II mechanism under hypoxic environments, which limits their effectiveness in PDI. To overcome this, we propose a novel approach for constructing oxygen independent PSs based on stable organic free-radical molecules. By fine-tuning the characteristics of tris(2,4,6-trichlorophenyl)-methyl (TTM) radicals through the incorporation of electron-donating moieties, we successfully found that TTMIndoOMe could produce substantial amounts of ROS even in hypoxic environments. In vitro experiments showed that TTMIndoOMe could effectively produce O2˙-, kill tumor cells and trigger ICD. Moreover, in vivo experiments also demonstrated that TTMIndoOMe could further trigger anti-tumor immune response and exhibit a superior therapeutic effect compared with PDT alone. Our study offers a promising approach towards the development of next-generation PSs functioning efficiently even under hypoxic conditions and also paves the way for the creation of more effective PSs for PDI.

11.
Angew Chem Int Ed Engl ; : e202406909, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701043

RESUMO

We report a series of coordination cages that incorporate peptide chains at their vertices, prepared through subcomponent self-assembly. Three distinct heterochiral tripeptide subcomponents were incorporated, each exhibiting an L-D-L stereoconfiguration. Through this approach, we prepared and characterized three tetrahedral metal-peptide cages that incorporate thiol and methylthio groups. The gelation of these cages wasprobed through the binding of additional metal ions, with the metal-peptide cages acting as junctions, owing to the presence of sulfur atoms on the peripheral peptides. Gels were obtained with cages bearing cysteine at the C-terminus. Our strategy for developing functional metal-coordinated supramolecular gels with a modular design may result in the development of materials useful for chemical separations or drug delivery.

12.
Clin Neurol Neurosurg ; 241: 108291, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38701547

RESUMO

OBJECTIVE: Acute cerebral infarction (ACI) contributes to disability and death accross the globe. Remote ischemic preconditioning (RIPC) reduces cerebral infarct size and improves neurological function in ACI. We conducted this research to reveal the effects of RIPC intervention on serum levels of microRNA-582-5p (miR-582-5p)/high mobility group box-1 protein (HMGB1), inflammation, oxidative stress and neurological function in patients with ACI. METHODS: In this study, 158 patients with ACI were prospectively selected and randomized into the control (administered symptomatic medication alone) and the RIPC (underwent RIPC of the limbs based on medication) groups, with their clinical baseline data documented. Serum levels of miR-582-5p, and HMGB1 and inflammatory factors [tumor necrosis factor alpha (TNF-α)/interleukin-1beta (IL-1ß)/IL-10] were assessed by RT-qPCR/ELISA, followed by comparisons of oxidative stress indices [glutathione-peroxidase (GSH-Px)/catalase (CAT)/superoxide dismutase (SOD)] using a fully automatic biochemical analyzer. Correlations between serum miR-582-5p with serum HMGB1, and between their levels with TNF-α/IL-1ß/IL-10 were analyzed by Pearson analysis. The NIHSS score/Barthel Index scale were used to assess neurological function/daily living ability. Intervention safety for ACI patients was evaluated. RESULTS: RIPC intervention increased serum miR-582-5p levels and decreased serum HMGB1 levels in ACI patients. RIPC intervention significantly reduced inflammation (diminished TNF-α/IL-1ß levels, increased IL-10 level) and oxidative stress (elevated GSH-Px/CAT/SOD levels) in ACI patients. Serum miR-582-5p was negatively correlated with TNF-α and IL-1ß levels, while positively correlated with IL-10 level, while HMGB1 was positively correlated with TNF-α and IL-1ß levels, while negatively correlated with IL-10 level. miR-582-5p was negatively correlated with HMGB1. RIPC intervention improved neurological function (reduced NIHSS, increased Barthel scores) in ACI patients to some extent. RIPC had certain effectiveness and safety in the treatment of ACI. CONCLUSION: After RIPC intervention, serum miR-582-5p levels were increased, HMGB1 levels were decreased, and inflammation and oxidative stress were reduced in ACI patients, which mitigated neurological deficits, improved patients' ability to perform life activities, and exerted neuroprotective effects to some extent.

13.
Drug Des Devel Ther ; 18: 1531-1546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737331

RESUMO

Purpose: Lung adenocarcinoma currently ranks the leading causes of cancer-related mortality worldwide. Many anti-inflammation herbs, like tetramethylpyrazine, have shown their anti-tumor potentials. Here, we evaluated the role of a novel chalcone derivative of tetramethylpyrazine ((E) -1- (E) -1- (2-hydroxy-5-chlorophenyl) -3- (3,5,6-trimethylpyrazin-2-yl) -2-propen-1, HCTMPPK) in lung adenocarcinoma. Methods: The effects of HCTMPPK on cell proliferation, apoptosis, and invasion were investigated by in-vitro assays, including CCK-8, colony formation assay, flow cytometry, transwell assay, and wound-healing assay. The therapeutic potential of HCTMPPK in vivo was evaluated in xenograft mice. To figure out the target molecules of HCTMPPK, a network pharmacology approach and molecular docking studies were employed, and subsequent experiments were conducted to confirm these candidate molecules. Results: HCTMPPK effectively suppressed the proliferative activity and migration, as well as enhanced the apoptosis of A549 cells in a concentration-dependent manner. Consistent with this, tumor growth was inhibited by HCTMPPK significantly in vivo. Regarding the mechanisms, HCTMPPK down-regulated Bcl-2 and MMP-9 and up-regulating Bax and cleaved-caspase-3. Subsequently, we identified 601 overlapping DEGs from LUAD patients in TCGA and GEO database. Then, 15 hub genes were identified by PPI network and CytoHubba. Finally, MELK was verified to be the HCTMPPK targeted site, through the molecular docking studies and validation experiments. Conclusion: Overall, our study indicates HCTMPPK as a potential MELK inhibitor and may be a promising candidate for the therapy of lung cancer.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Regulação para Baixo , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares , Pirazinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pirazinas/farmacologia , Pirazinas/química , Proliferação de Células/efeitos dos fármacos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Chalcona/farmacologia , Chalcona/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Camundongos Nus , Camundongos Endogâmicos BALB C , Células A549 , Movimento Celular/efeitos dos fármacos , Chalconas/farmacologia , Chalconas/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Células Tumorais Cultivadas
14.
Transl Cancer Res ; 13(4): 1834-1847, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38737687

RESUMO

Background: Hepatocellular carcinoma (HCC) is a major health problem with more than 850,000 cases per year worldwide. This cancer is now the third leading cause of cancer-related deaths worldwide, and the number is rising. Cancer cells develop anoikis resistance which is a vital step during cancer progression and metastatic colonization. However, there is not much research that specifically addresses the role of anoikis in HCC, especially in terms of prognosis. Methods: This study obtained gene expression data and clinical information from 371 HCC patients through The Cancer Genome Atlas (TCGA) Program and The Gene Expression Omnibus (GEO) databases. A total of 516 anoikis-related genes (ANRGs) were retrieved from GeneCard database and Harmonizome portal. Differential expression analysis identified 219 differentially expressed genes (DEGs), and univariate Cox regression analysis was utilized to select 99 ANRGs associated with the prognosis of HCC patients. A risk scoring model with seven genes was established using the least absolute shrinkage and selection operator (LASSO) regression model, and internal validation of the model was performed. Results: The identified 99 ANRGs are closely associated with the prognosis of HCC patients. The risk scoring model based on seven characteristic genes demonstrates excellent predictive performance, further validated by receiver operating characteristic (ROC) curves and Kaplan-Meier survival curves. The study reveals significant differences in immune cell infiltration, gene expression, and survival status among different risk groups. Conclusions: The prognosis of HCC patients can be predicted using a unique prognostic model built on ANRGs in HCC.

15.
Cell ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38653239

RESUMO

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.

16.
J Asian Nat Prod Res ; 26(5): 616-635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38655696

RESUMO

Ulcerative colitis (UC) is a chronic recurrent inflammatory disease affecting the rectum and colon. Numerous epidemiological studies have identified smoking as a protective factor for UC. Dysbiosis of intestinal microbiota and release of inflammatory factors are well-established characteristics associated with UC. Therefore, we have observed that nicotine exhibits the potential to ameliorate colitis symptoms in UC mice. Additionally, it exerts a regulatory effect on colonic microbiota dysbiosis by promoting the growth of beneficial bacteria while suppressing harmful bacteria. Combined in vivo and in vitro investigations demonstrate that nicotine primarily impedes the assembly of NLRP3, subsequently inhibiting downstream IL-1ß secretion.


Assuntos
Sulfato de Dextrana , Microbioma Gastrointestinal , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nicotina , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nicotina/farmacologia , Camundongos , Colite/tratamento farmacológico , Colite/induzido quimicamente , Camundongos Endogâmicos C57BL , Interleucina-1beta/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Estrutura Molecular , Masculino , Disbiose/tratamento farmacológico , Humanos
17.
J Cancer ; 15(9): 2561-2572, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577597

RESUMO

Purpose: Papillary thyroid cancer (PTC) stands as one of the most prevalent types of thyroid cancers, characterized by a propensity for in-situ recurrence and distant metastasis. The high mobility group protein (HMGB1), a conserved nuclear protein, plays a pivotal role in carcinogenesis by stimulating tumor cell growth and migration. Nevertheless, the underlying mechanism driving aberrant HMGB1 expression in PTC necessitates further elucidation. Materials and methods: Our study unraveled the impact of low and overexpression of USP15 on the proliferation, invasion, and metastasis of PTC cells. Through a comprehensive array of molecular techniques, we uncovered the intricate relationship between HMGB1 and USP15 in the progression of PTC. Results: In this study, we identified USP15, a deubiquitinase in the ubiquitin-specific proteases family, as a true deubiquitylase of HMGB1 in PTC. USP15 was shown to interact with HMGB1 in a deubiquitination activity-dependent manner, deubiquitinating and stabilizing HMGB1. USP15 depletion significantly decreased PTC cell proliferation, migration, and invasion. In addition, the effects induced by USP15 depletion could be rescued by further HMGB1 overexpression. But when HMGB1 is knocked down, even overexpression of USP15 could not promote the progression of PTC cells. Conclusion: In essence, our discoveries shed light on the previously uncharted catalytic role of USP15 as a deubiquitinating enzyme targeting HMGB1, offering a promising avenue for potential therapeutic interventions in the management of PTC.

18.
Angew Chem Int Ed Engl ; : e202403521, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654696

RESUMO

Lithium-oxygen batteries possess an extremely high theoretical energy density, rendering them a prime candidate for next-generation secondary batteries. However, they still face multiple problems such as huge charge polarization and poor cycle life, which lay a significant gap between laboratory research and commercial applications. In this work, we adapt 15-crown-5 ether (C15) as solvent to regulate the generation of discharge products in lithium-oxygen batteries. The coronal structure endows C15 with strong affinity to Li+, firmly stabilizes the intermediate LiO2 and discharge product Li2O2. Thus, the crystalline Li2O2 is amorphized into easily decomposable amorphous products. The lithium-oxygen batteries assembled with 0.5 M C15 electrolyte show an increased discharge capacity from 4.0 mAh cm-2 to 5.7 mAh cm-2 and a low charge overpotential of 0.88 V during the whole lifespan at 0.05 mA cm-2. The batteries with 1 M C15 electrolyte can cycle stably for 140 cycles. Furthermore, the amorphous characteristic of Li2O2 product is preserved when matched with redox mediators such as LiI, with the charge polarization further decreasing to 0.74 V over a cycle life of 190 cycles. This provides new possibilities for electrolyte design to promote Li2O2 amorphization and reduce charge overpotential in lithium-oxygen batteries.

19.
J Control Release ; 370: 168-181, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38643936

RESUMO

The high prevalence and severity of hepatocellular carcinoma (HCC) present a significant menace to human health. Despite the significant advancements in nanotechnology-driven antineoplastic agents, there remains a conspicuous gap in the development of targeted chemotherapeutic agents specifically designed for HCC. Consequently, there is an urgent need to explore potent drug delivery systems for effective HCC treatment. Here we have exploited the interplay between HCC and adipocyte to engineer a hybrid adipocyte-derived exosome platform, serving as a versatile vehicle to specifically target HCC and exsert potent antitumor effect. A lipid-like prodrug of docetaxel (DSTG) with a reactive oxygen species (ROS)-cleavable linker, and a lipid-conjugated photosensitizer (PPLA), spontaneously co-assemble into nanoparticles, functioning as the lipid cores of the hybrid exosomes (HEMPs and NEMPs). These nanoparticles are further encapsuled within adipocyte-derived exosome membranes, enhancing their affinity towards HCC cancer cells. As such, cancer cell uptakes of hybrid exosomes are increased up to 5.73-fold compared to lipid core nanoparticles. Our in vitro and in vivo experiments have demonstrated that HEMPs not only enhance the bioactivity of the prodrug and extend its circulation in the bloodstream but also effectively inhibit tumor growth by selectively targeting hepatocellular carcinoma tumor cells. Self-facilitated synergistic drug release subsequently promoting antitumor efficacy, inducing significant inhibition of tumor growth with minimal side effects. Our findings herald a promising direction for the development of targeted HCC therapeutics.

20.
Heliyon ; 10(8): e29383, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644835

RESUMO

Background: The role of glycosyltransferase (GT) genes in lung adenocarcinoma (LUAD) needs further elucidation. Thus, our study aims to identify the prognostic gene signature of LUAD and explore its molecular functions. Methods: We initially extracted GT gene sets from the database, and obtained mRNA expression levels and clinical data from The Cancer Genome Atlas (TCGA) database. For constructing a prognostic model for GT genes, we utilized univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. Using the model, patients were categorized into high- and low-risk groups. Additionally, we evaluated differences in tumor immune infiltration between these groups and identified potential therapeutic drugs. Finally, we experimentally validated the expression levels of these crucial prognostic genes. Results: We developed a risk score comprising nine GT genes (C1GALT1, FUT1, GALNT2, PLOD2, POMK, PYGB, ST3GAL6, UGT2B11, UGT3A1). Patients were then categorized into low- and high-risk groups based on this score. The low-risk group showed superior overall survival (OS) compared to the high-risk group. There were significantly distinct tumor immune microenvironment statuses observed between the two groups. We identified potential therapeutic drugs, including the MEK inhibitor (PD-184352). Finally, we verified the expression of these nine GT genes through immunohistochemistry (IHC) staining and quantitative real-time PCR (qPCR). Conclusion: We identified a distinct LUAD GT gene signature, and these differentially expressed mRNAs could serve as valuable prognostic biomarkers and therapeutic targets. Furthermore, we experimentally validated their expression levels and identified potential therapeutic agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA