Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
BMC Oral Health ; 24(1): 880, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095718

RESUMO

BACKGROUND: Patients with skeletal angle Class III malocclusion usually have inadequate hard and soft tissue volume at the mandibular anterior teeth. The labial proclination at the teeth may lead to gingival recession. The purpose of this study was to explore whether periodontal phenotype modification therapy with soft tissue augmentation (PhMT-s) can prevent gingival recession in these patients. METHODS: Four patients with skeletal Class III malocclusion and a thin periodontal phenotype underwent surgical-orthodontic treatment. Prior to tooth movement, they underwent a minimally invasive vestibular incision with subperiosteal tunnel access combined with autogenous connective tissue grafts for periodontal phenotype modification with soft tissue augmentation (PhMT-s). The labial gingival thickness of the anterior mandibular teeth was measured at three distinct levels: at the cementoenamel junction (GT0), 3 mm apical to the CEJ (GT3), and 6 mm apical to the CEJ (GT6). These measurements were taken at baseline, three months following PhMT-s, and after tooth decompensation. Additionally, a biopsy sample was obtained from the PhMT-s site of one patient. All sections were subsequently stained using hematoxylin and eosin, Masson trichrome, Sirius Red, and immunohistochemistry. RESULTS: The thickness of the labial gingiva was increased about 0.42 to 2.00 mm after PhMT-s. At the end of pre-orthognathic surgical orthodontic treatment, the thickness of the labial gingiva was increased about - 0.14 to 1.32 mm compared to the baseline and no gingival recession occurred after the pre-orthognathic surgical orthodontic treatment. The histologic results demonstrated that the grafts obtained from the PhMT-s site exhibited increased deposition of collagen fibers. Moreover, the proportion of type III collagen increased and the grafts displayed significantly reduced positive expression of CD31 and OCN. CONCLUSIONS: PhMT-s increased the thickness of the soft tissue, stabilizing the gingival margin for teeth exhibiting a thin periodontal phenotype and undergoing labial movement. This is attributed to the increased deposition of collagen fibers.


Assuntos
Gengiva , Retração Gengival , Má Oclusão Classe III de Angle , Fenótipo , Técnicas de Movimentação Dentária , Humanos , Retração Gengival/cirurgia , Má Oclusão Classe III de Angle/terapia , Má Oclusão Classe III de Angle/cirurgia , Feminino , Gengiva/patologia , Gengiva/transplante , Masculino , Técnicas de Movimentação Dentária/métodos , Tecido Conjuntivo/transplante , Adulto , Adulto Jovem , Seguimentos , Mandíbula/cirurgia , Mandíbula/patologia , Colo do Dente/patologia , Biópsia , Gengivoplastia/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos
2.
Sci Total Environ ; 946: 174503, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38971246

RESUMO

Plant growth-promoting rhizobacteria (PGPR) play important roles in plant growth and defense under heavy metal (HM) stress. The direct integration of microbial and plant signals is key to the regulation of plant growth and HM stress defense, but the underlying mechanisms are still limited. Herein, we reveal a novel mechanism by which PGPR regulates plant growth-regulating substances in plant tissues and coordinates plant growth and defense in pak choi under cadmium (Cd) stress. This might be an efficient strategy and an extension of the mechanism by which plant-microbe interactions improve plant stress resistance. Azospirillum brasilense and heme synergistically reduced the shoot Cd content and promoted the growth of pak choi. The interaction between abscisic acid of microbial origin and heme improved Cd stress tolerance through enhancing Cd accumulation in the root cell wall. The interaction between A. brasilense and heme induced the growth-defense shift in plants under Cd stress. Plants sacrifice growth to enhance Cd stress defense, which then transforms into a dual promotion of both growth and defense. This study deepens our understanding of plant-microbe interactions and provides a novel strategy to improve plant growth and defense under HM stress, ensuring future food production and security.


Assuntos
Azospirillum brasilense , Cádmio , Heme , Poluentes do Solo , Azospirillum brasilense/fisiologia , Cádmio/toxicidade , Heme/metabolismo , Poluentes do Solo/toxicidade , Desenvolvimento Vegetal/efeitos dos fármacos , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico
3.
Cell Signal ; 121: 111273, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38950874

RESUMO

Diabetes-associated periodontitis (DP) presents severe inflammation and resistance to periodontal conventional treatment, presenting a significant challenge in clinical management. In this study, we investigated the underlying mechanism driving the hyperinflammatory response in gingival epithelial cells (GECs) of DP patients. Our findings indicate that lysosomal dysfunction under high glucose conditions leads to the blockage of autophagy flux, exacerbating inflammatory response in GECs. Single-cell RNA sequencing and immunohistochemistry analyses of clinical gingival epithelia revealed dysregulation in the lysosome pathway characterized by reduced levels of lysosome-associated membrane glycoprotein 2 (LAMP2) and V-type proton ATPase 16 kDa proteolipid subunit c (ATP6V0C) in subjects with DP. In vitro stimulation of human gingival epithelial cells (HGECs) with a hyperglycemic microenvironment showed elevated release of proinflammatory cytokines, compromised lysosomal acidity and blocked autophagy. Moreover, HGECs with deficiency in ATP6V0C demonstrated impaired autophagy and heightened inflammatory response, mirroring the effects of high glucose stimulation. Proteomic analysis of acetylation modifications identified altered acetylation levels in 28 autophagy-lysosome pathway-related proteins and 37 sites in HGECs subjected to high glucose stimulation or siATP6V0C. Overall, our finding highlights the pivotal role of lysosome impairment in autophagy obstruction in DP and suggests a potential impact of altered acetylation of relevant proteins on the interplay between lysosome dysfunction and autophagy blockage. These insights may pave the way for the development of effective therapeutic strategies against DP.


Assuntos
Autofagia , Células Epiteliais , Gengiva , Lisossomos , Periodontite , Humanos , Lisossomos/metabolismo , Acetilação , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Gengiva/metabolismo , Gengiva/patologia , Periodontite/metabolismo , Periodontite/patologia , Periodontite/complicações , Masculino , Feminino , ATPases Vacuolares Próton-Translocadoras/metabolismo , Pessoa de Meia-Idade , Glucose/farmacologia , Adulto
4.
BMC Plant Biol ; 24(1): 518, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851683

RESUMO

Plant polyploidization increases the complexity of epigenomes and transcriptional regulation, resulting in genome evolution and enhanced adaptability. However, few studies have been conducted on the relationship between gene expression and epigenetic modification in different plant tissues after allopolyploidization. In this study, we studied gene expression and DNA methylation modification patterns in four tissues (stems, leaves, flowers and siliques) of Brassica napusand its diploid progenitors. On this basis, the alternative splicing patterns and cis-trans regulation patterns of four tissues in B. napus and its diploid progenitors were also analyzed. It can be seen that the number of alternative splicing occurs in the B. napus is higher than that in the diploid progenitors, and the IR type increases the most during allopolyploidy. In addition, we studied the fate changes of duplicated genes after allopolyploidization in B. napus. We found that the fate of most duplicated genes is conserved, but the number of neofunctionalization and specialization is also large. The genetic fate of B. napus was classified according to five replication types (WGD, PD, DSD, TD, TRD). This study also analyzed generational transmission analysis of expression and DNA methylation patterns. Our study provides a reference for the fate differentiation of duplicated genes during allopolyploidization.


Assuntos
Brassica napus , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Poliploidia , Brassica napus/genética , Brassica napus/metabolismo , Genes Duplicados/genética , Genes de Plantas , Processamento Alternativo , Duplicação Gênica , Epigênese Genética
5.
Aging Cell ; 23(7): e14159, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38556842

RESUMO

Previous research on sleep and aging largely has failed to illustrate the optimal dose-response curve of this relationship. We aimed to analyze the associations between sleep duration and measures of predicted age. In total, 241,713 participants from the UK Biobank were included. Habitual sleep duration was collected from the baseline questionnaire. Four indicators, homeostatic dysregulation (HD), phenoAge (PA), Klemera-Doubal method (KDM), and allostatic load (AL), were chosen to assess predicted age. Multivariate linear regression models were utilized. The association of sleep duration and predicted age followed a U-shape (All p for nonlinear <0.05). Compared with individuals who sleep for 7 h/day, the multivariable-adjusted beta of ≤5 and ≥9 h/day were 0.05 (95% CI 0.03, 0.07) and 0.03 (95% CI 0.02, 0.05) for HD, 0.08 (95% CI 0.01, 0.14) and 0.36 (95% CI 0.31, 0.41) for PA, and 0.21 (95% CI 0.12, 0.30) and 0.30 (95% CI 0.23, 0.37) for KDM. Significant independent and joint effects of sleep and cystatin C (CysC) and gamma glutamyltransferase (GGT) on predicted age metrics were future found. Similar results were observed when conducting stratification analyses. Short and long sleep duration were associated with accelerated predicted age metrics mediated by CysC and GGT.


Assuntos
Envelhecimento , Bancos de Espécimes Biológicos , Sono , Humanos , Reino Unido , Sono/fisiologia , Envelhecimento/fisiologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Duração do Sono , Biobanco do Reino Unido
6.
Int Dent J ; 74(4): 823-835, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38685137

RESUMO

PURPOSE: To explore the mechanism underlying autophagy disruption in gingival epithelial cells (GECs) in diabetic individuals. METHODS AND MATERIALS: Bone marrow-derived macrophages (BMDMs) and GECs were extracted from C57/bl and db/db mice, the exosomes (Exo) were isolated from BMDMs. qRT‒PCR and Western blotting were performed to analyse gene expression. The AnimalTFDB database was used to identify relevant transcription factors, and miRNA sequencing was utilised to identify relevant miRNAs with the aid of the TargetScan/miRDB/miRWalk databases. A dual-luciferase assay was conducted to verify intermolecular targeting relationships. RESULTS: Similar to BMDMs, BMDM-derived Exos disrupted autophagy and exerted proinflammatory effects in GEC cocultures, and ATG7 may play a vital role. AnimalTFDB database analysis and dual-luciferase assays indicated that NR5A2 is the most relevant transcription factor that regulates Atg7 expression. SiRNA-NR5A2 transfection blocked autophagy in GECs and exacerbated inflammation, whereas NR5A2 upregulation restored ATG7 expression and ameliorated ExoDM-mediated inflammation. MiRNA sequencing, with TargetScan/miRDB/miRWalk analyses and dual-luciferase assays, confirmed that miR-381-3p is the most relevant miRNA that targets NR5A2. MiR-381-3p mimic transfection blocked autophagy in GECs and exacerbated inflammation, while miR-381-3p inhibitor transfection restored ATG7 expression and attenuated ExoDM-mediated inflammation. CONCLUSION: BMDM-derived Exos, which carry miR-381-3p, inhibit NR5A2 and disrupt autophagy in GECs, increasing periodontal inflammation in diabetes.


Assuntos
Autofagia , Células Epiteliais , Exossomos , Gengiva , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs , Animais , Masculino , Camundongos , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Células Epiteliais/metabolismo , Exossomos/metabolismo , Gengiva/citologia , Gengiva/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
7.
Heliyon ; 10(1): e23534, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173522

RESUMO

Background: Dexmedetomidine is known to prolong the analgesic duration of spinal anesthesia, but it can be challenging to achieve further extension without opioids. Therefore, this study aimed to investigate a novel analgesic strategy using dexmedetomidine as an adjuvant to spinal-epidural anesthesia for elective cesarean surgery. Methods: The study was a randomized, double-blind, controlled trial conducted at a single center. Sixty parturients who underwent elective cesarean were randomly assigned to either group C or group D. Group D received an intrathecal injection of 12.5 mg ropivacaine and 5 µg dexmedetomidine followed by continuous epidural patient-controlled analgesia (PCA) infusion with a total volume of 100 ml, containing 0.2 % ropivacaine and 0.5 µg/kg dexmedetomidine. Group C received an intrathecal injection of 12.5 mg ropivacaine with an equivalent saline placebo followed by a similar PCA infusion, containing 0.2 % ropivacaine and an equivalent saline placebo. Results: The primary outcome was visual analog scale score on movement at 24 h after surgery. The results showed that the rest and motion pain scores in group D were significantly lower than those in group C at 6 h, 12 h, and 24 h after surgery (P < 0.05), with the differences at 24 h were 5.0 (5.0, 5.0)in group D versus 5.0 (5.0, 6.0) in group C (P = 0.04). Additionally, the time to the first PCA in group D was significantly longer than that in group C (P < 0.05), as well as the time of sensory and motor recovery. Conclusions: Whole-course application of dexmedetomidine as an adjuvant to spinal-epidural anesthesia could effectively extend the analgesic duration of ropivacaine to 24 h following elective cesarean surgery.

8.
Theranostics ; 14(2): 662-680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169511

RESUMO

Rationale: Cancer local recurrence increases the mortality of patients, and might be caused by field cancerization, a pre-malignant alteration of normal epithelial cells. It has been suggested that cancer-derived small extracellular vesicles (CDEs) may contribute to field cancerization, but the underlying mechanisms remain poorly understood. In this study, we aim to identify the key regulatory factors within recipient cells under the instigation of CDEs. Methods: In vitro experiments were performed to demonstrate that CDEs promote the expression of CREPT in normal epithelial cells. TMT-based quantitative mass spectrometry was employed to investigate the proteomic differences between normal cells and tumor cells. Loss-of-function approaches by CRISPR-Cas9 system were used to assess the role of CREPT in CDEs-induced field cancerization. RNA-seq was performed to explore the genes regulated by CREPT during field cancerization. Results: CDEs promote field cancerization by inducing the expression of CREPT in non-malignant epithelial cells through activating the ERK signaling pathway. Intriguingly, CDEs failed to induce field cancerization when CREPT was deleted, highlighting the importance of CREPT. Transcriptomic analyses revealed that CDEs elicited inflammatory responses, primarily through activation of the TNF signaling pathway. CREPT, in turn, regulates the transduction of downstream signals of TNF by modulating the expression of TNFR2 and PI3K, thereby promoting inflammation-to-cancer transition. Conclusion: CREPT not only serves as a biomarker for field cancerization, but also emerges as a target for preventing the cancer local recurrence.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Linhagem Celular Tumoral , Proteômica , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Proteínas de Neoplasias/genética , Vesículas Extracelulares/metabolismo , Neoplasias/genética
9.
Environ Sci Pollut Res Int ; 31(6): 8952-8962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183540

RESUMO

Methyl tert-butyl ether (MTBE), a type of gasoline additive, has been found to affect insulin function and glucose homeostasis in animal experiments, but there is still no epidemiological evidence. Zinc (Zn) is a key regulatory element of insulin secretion and function, and Zn homeostasis can be disrupted by MTBE exposure through inducing oxidative stress. Therefore, we suspected that Zn might be involved and play an important role in the process of insulin secretion inhibited by MTBE exposure. In this study, we recruited 201 male subjects including occupational and non-occupational MTBE exposure from Anhui Province, China in 2019. Serum insulin and functional analog fibroblast growth factor 1 (FGF1) and blood MTBE were detected by Elisa and headspace solid-phase microextraction and gas chromatography-high-resolution mass spectrometry. According to MTBE internal exposure level, the workers were divided into low- and high-exposed groups and found that the serum insulin level in the high-exposed group was significantly lower than that in the low-exposed group (p = 0.003) while fasting plasma glucose (FPG) level increased obviously in the high-exposed group compared to the low-exposed group (p = 0.001). Further analysis showed that MTBE exposure level was positively correlated with FPG level, but negatively correlated with serum insulin level, which suggested that the FPG level increase might be related to the decrease of serum insulin level induced by MTBE exposure. The results of further mediation effect analysis showed that changes in serum zinc levels played a major intermediary role in the process of insulin secretion inhibition and blood glucose elevation caused by MTBE exposure. In addition, a significant negative correlation was found between MTBE exposure and serum Zn level, which might play a strong mediating effect on the inhibition of insulin secretion induced by MTBE exposure. In conclusion, our study provided evidence that MTBE could inhibit insulin secretion and interfere with Zn metabolism in gas station workers for the first time, and found that Zn might play an important mediation effect during the process of inhibiting insulin secretion and interfering with glucose metabolism induced by MTBE exposure.


Assuntos
Secreção de Insulina , Insulinas , Éteres Metílicos , Zinco , Animais , Humanos , Masculino , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/química , Gasolina/efeitos adversos , Insulinas/metabolismo , Éteres Metílicos/efeitos adversos , Zinco/química , Zinco/farmacologia
10.
Environ Sci Process Impacts ; 26(2): 334-343, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38168809

RESUMO

Insulin resistance is closely related to many metabolic diseases and has become a serious public health problem worldwide. So, it is crucial to find its environmental pathogenic factors. Methyl tert-butyl ether (MTBE), a widely used unleaded gasoline additive, has been proven to affect glycolipid metabolism. However, results from population studies are lacking. For this purpose, the potential relationships between MTBE exposure and the triglyceride glucose (TyG) index, a useful surrogate marker of insulin resistance, were evaluated using a small-scale occupational population. In this study, 201 participants including occupational and non-occupational MTBE exposure workers were recruited from the Occupational Disease Prevention and Control Hospital of Huaibei, and their health examination information and blood samples with informed consent were collected. The internal exposure levels were assessed by detecting blood MTBE using solid-phase-micro-extraction gas chromatography-mass spectrometry. Then the adjusted linear regression model was used to assess the relationship between MTBE exposure and fasting plasma glucose (FPG), or TyG index. Then, receiver-operating-characteristic (ROC) curves were performed to calculate the optimal cut-off points. Multivariable and hierarchical logistic regression models were used to analyze the impact of MTBE exposure on the risk of insulin resistance. Obvious correlations were observed between blood MTBE levels with TyG index (p = 0.016) and FPG (p = 0.001). Further analysis showed that using the mean of the TyG index (8.77) as a cutoff value had a good effect on reflecting the risk of insulin resistance. Multivariable logistic regression analysis also indicated that MTBE exposure was an independent risk factor for a high TyG index (OR = 1.088, p = 0.038), which indicated that MTBE exposure might be a new environmental pathogenic factor leading to insulin resistance, and MTBE exposure might increase the risk of insulin resistance by independently elevating the TyG index in male gas station workers.


Assuntos
Resistência à Insulina , Éteres Metílicos , Humanos , Masculino , Triglicerídeos , Cromatografia Gasosa-Espectrometria de Massas , Biomarcadores
11.
BMC Pediatr ; 23(1): 589, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993876

RESUMO

OBJECTIVES: To validate an appropriate evaluation method of liver fibrosis assessment based on the unique pathological features of biliary atresia (BA) that could well predict its prognosis. METHODS: A total of 68 patients with BA who underwent Kasai procedure (KP) and an intraoperative liver biopsy, followed up from January 2019 to December 2021, were recruited in a retrospective analysis. Ishak, Metavir, and BA-specific staging systems in relation to outcomes were analyzed using logistic regression, COX proportional hazard regression, Kaplan-Meier analysis, etc. RESULTS: Kaplan-Meier analysis determined a significant difference in native liver survival according to the BA-specific stage (p = 0.002). The ROC curve analysis for predicting prognosis showed that the AUC of BA-specific staging combined with iBALF and severe bile duct proliferation (BDP) (0.811, 95% CI: 0.710-0.913, p < 0.0001) was higher than BA-specific staging alone (0.755, 95% CI: 0.639-0.872, p < 0.001). CONCLUSIONS: The BA-specific staging system reflects the condition of the liver fibrosis, and its combination with iBALF and severe BDP helps to better evaluate the prognosis of patients with BA.


Assuntos
Atresia Biliar , Humanos , Lactente , Atresia Biliar/cirurgia , Portoenterostomia Hepática , Prognóstico , Estudos Retrospectivos , Cirrose Hepática
12.
Plant Physiol ; 193(2): 1313-1329, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37403190

RESUMO

Subgenome expression dominance plays a crucial role in the environmental adaptation of polyploids. However, the epigenetic molecular mechanism underlying this process has not been thoroughly investigated, particularly in perennial woody plants. Persian walnut (Juglans regia) and its wild relative, Manchurian walnut (Juglans mandshurica), are woody plants of great economic importance and are both paleopolyploids that have undergone whole-genome duplication events. In this study, we explored the characteristics of subgenome expression dominance in these 2 Juglans species and examined its epigenetic basis. We divided their genomes into dominant subgenome (DS) and submissive subgenome (SS) and found that the DS-specific genes might play critical roles in biotic stress response or pathogen defense. We comprehensively elucidated the characteristics of biased gene expression, asymmetric DNA methylation, transposable elements (TEs), and alternative splicing (AS) events of homoeologous gene pairs between subgenomes. The results showed that biased expression genes (BEGs) in 2 Juglans species were mainly related to external stimuli response, while non-BEGs were related to complexes that might be involved in signal transduction. DS genes had higher expression and more AS events while having less DNA methylation and TEs than homoeologous genes from the SS in the 2 Juglans species. Further studies showed that DNA methylation might contribute to the biased expression of gene pairs by modifying LTR/TIR/nonTIR TEs and improving the AS efficiency of corresponding precursor mRNAs in a particular context. Our study contributes to understanding the epigenetic basis of subgenome expression dominance and the environmental adaptation of perennial woody plants.


Assuntos
Metilação de DNA , Juglans , Metilação de DNA/genética , Genoma de Planta/genética , Juglans/genética , Regulação da Expressão Gênica de Plantas , Epigênese Genética
13.
Pediatr Res ; 94(4): 1297-1307, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37138025

RESUMO

BACKGROUND: The pathogenesis of liver fibrosis in biliary atresia (BA) is unclear. Epidermal growth factor (EGF) plays a vital role in liver fibrosis. This study aims to investigate the expression of EGF and the mechanisms of its pro-fibrotic effects in BA. METHODS: EGF levels in serum and liver samples of BA and non-BA children were detected. Marker proteins of EGF signaling and epithelial-mesenchymal transition (EMT) in liver sections were evaluated. Effects of EGF on intrahepatic cells and the underlying mechanisms were explored in vitro. Bile duct ligation (BDL) mice with/without EGF antibody injection were used to verify the effects of EGF on liver fibrosis. RESULTS: Serum levels and liver expression of EGF elevated in BA. Phosphorylated EGF receptor (p-EGFR) and extracellular regulated kinase 1/2 (p-ERK1/2) increased. In addition, EMT and proliferation of biliary epithelial cells were present in BA liver. In vitro, EGF induced EMT and proliferation of HIBEpic cells and promoted IL-8 expression in L-02 cells by phosphorylating ERK1/2. And EGF activated LX-2 cells. Furthermore, EGF antibody injection reduced p-ERK1/2 levels and alleviated liver fibrosis in BDL mice. CONCLUSION: EGF is overexpressed in BA. It aggravates liver fibrosis through EGF/EGFR-ERK1/2 pathway, which may be a therapeutic target for BA. IMPACT: The exact pathogenesis of liver fibrosis in BA is unknown, severely limiting the advancement of BA treatment strategies. This study revealed that serum and liver tissue levels of EGF were increased in BA, and its expression in liver tissues was correlated with the degree of liver fibrosis. EGF may promote EMT and proliferation of biliary epithelial cells and induce IL-8 overexpression in hepatocytes through EGF/EGFR-ERK1/2 signaling pathway. EGF can also activate HSCs in vitro. The EGF/EGFR-ERK1/2 pathway may be a potential therapeutic target for BA.


Assuntos
Atresia Biliar , Humanos , Criança , Camundongos , Animais , Atresia Biliar/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Interleucina-8/metabolismo , Ductos Biliares/cirurgia , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Fígado/metabolismo , Cirrose Hepática , Ligadura/efeitos adversos , Receptores ErbB/metabolismo
14.
Clin Rheumatol ; 42(8): 2145-2154, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37160775

RESUMO

OBJECTIVE: To investigate the immune response-related protein profiling in plasma of patients with idiopathic inflammatory myopathies (IIMs), especially in anti-MDA5+ dermatomyositis (DM). METHODS: A total of 166 IIM patients and 107 healthy controls (HCs) were enrolled in our study. Ninety-two plasma immune response-related proteins were detected by Olink proteomics in 36 IIM patients and 25 HCs. The expression of plasma KRT19 was validated in another 130 IIM patients, 82 HCs, and 55 other rheumatic diseases. RESULTS: A total of 46 differentially expressed proteins were detected, including 12 upregulated proteins and 34 downregulated proteins in IIM patients compared with HCs. Pathway analysis revealed lactoferrin danger signal response pathway, TLR4 signaling and tolerance, infection, and IL-10 signaling pathway were activated. The immune response-related protein profiling significantly altered in anti-MDA5+ DM patients, with LAMP3, HSD11B1, and KRT19 significantly increased, while SH2D1A, ITGA11, TRIM21, CD28, ITGB6, and HEXIM1 tremendously decreased. In addition, KRT19 was significantly increased in IIM patients, especially in anti-MDA5+ DM patients with the diagnostic value of a significant area under the ROC curve of 0.881. CONCLUSION: Immune response-related proteins are significantly altered in patients with anti-MDA5+ DM patients. KRT19 could be a potential biomarker for anti-MDA5+ DM patients. Key Points • What is already known on this topic? Anti-MDA5+ DM is a distinctive subtype of IIM. Plasma immune response-related proteins panel needs to be investigated. • What this study adds? Plasma protein profiling of immune response-related proteins significantly altered in patients with idiopathic inflammatory myopathies (IIM), especially in anti-MDA5+ DM patients. • How this study might affect research, practice, or policy? KRT19 could be a potential biomarker in patients with anti-MDA5+ dermatomyositis.


Assuntos
Dermatomiosite , Miosite , Humanos , Proteômica , Autoanticorpos , Biomarcadores , Helicase IFIH1 Induzida por Interferon , Estudos Retrospectivos , Fatores de Transcrição , Proteínas de Ligação a RNA
15.
Front Immunol ; 14: 1169057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228600

RESUMO

Background: Myositis-specific autoantibodies (MSAs) are clinically used to diagnose and define idiopathic inflammatory myopathy (IIM) subsets. However, the underlying pathogenic mechanisms of patients with different MSAs remain unclear. Methods: A total of 158 Chinese patients with IIM and 167 gender- and age-matched healthy controls (HCs) were enrolled. Transcriptome sequencing (RNA-Seq) was performed with peripheral blood mononuclear cells (PBMCs), followed by the identification of differentially expressed genes (DEGs) and analysis of gene set enrichment analysis, immune cell infiltration, and WGCNA. Monocyte subsets and related cytokines/chemokines were quantified. The expressions of interferon (IFN)-related genes were validated using qRT-PCR and Western blot in both PBMCs and monocytes. We also performed correlation analysis and ROC analysis to explore the potential clinical significance of the IFN-related genes. Results: There were 1,364 genes altered in patients with IIM, including 952 upregulated and 412 downregulated genes. The type I interferon (IFN-I) pathway was remarkably activated in patients with IIM. Compared with patients with other MSAs, IFN-I signatures were significantly activated in patients with anti-melanoma differentiation-associated gene 5 (MDA5) antibodies. In total, 1,288 hub genes associated with IIM onset were identified using WGCNA, including 29 key DEGs associated with IFN signaling. The patients had more CD14brightCD16- classical, CD14brightCD16+ intermediate, and fewer CD14dimCD16+ non-classical monocyte subsets. Plasma cytokines like IL-6 and TNF and chemokines including CCL3 and MCPs increased. The validation of IFN-I-related gene expressions was consistent with the findings from RNA-Seq. The IFN-related genes were correlated with laboratory parameters and helpful for IIM diagnosis. Conclusion: Gene expressions were remarkably altered in the PBMCs of IIM patients. Anti-MDA5+ IIM patients had a more pronounced activated IFN signature than others. Monocytes exhibited a proinflammatory feature and contributed to the IFN signature of IIM patients.


Assuntos
Interferon Tipo I , Miosite , Humanos , Autoanticorpos , Monócitos/metabolismo , Leucócitos Mononucleares/metabolismo , Interferon Tipo I/genética , Citocinas
16.
J Periodontol ; 94(12): 1436-1449, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37133980

RESUMO

BACKGROUND: The aim of this study was to construct crosslinked polylysine-hyaluronic acid microspheres (pl-HAM) ladened with gingival mesenchymal stem cells (GMSCs) and explore its biologic behavior in soft tissue regeneration. METHODS: The effects of the crosslinked pl-HAM on the biocompatibility and the recruitment of L-929 cells and GMSCs were detected in vitro. Moreover, the regeneration of subcutaneous collagen tissue, angiogenesis and the endogenous stem cells recruitment were investigated in vivo. We also detected the cell developing capability of pl-HAMs. RESULTS: The crosslinked pl-HAMs appeared to be completely spherical-shaped particles and had good biocompatibility. L-929 cells and GMSCs grew around the pl-HAMs and increased gradually. Cell migration experiments showed that pl-HAMs combined with GMSCs could promote the migration of vascular endothelial cells significantly. Meanwhile, the green fluorescent protein-GMSCs in the pl-HAM group still remain in the soft tissue regeneration area 2 weeks after surgery. The results of in vivo studies showed that denser collagen deposition and more angiogenesis-related indicator CD31 expression in the pl-HAMs+ GMSCs + GeL group compared with the pl-HAMs + GeL group. Immunofluorescence showed that CD44, CD90, CD73 co-staining positive cells surrounded the microspheres in both pl-HAMs + GeL group and pl-HAM + GMSCs + GeL group. CONCLUSIONS: The crosslinked pl-HAM ladened with GMSCs system could provide a suitable microenvironment for collagen tissue regeneration, angiogenesis and endogenous stem cells recruitment, which may be an alternative to autogenous soft tissue grafts for minimally invasive treatments for periodontal soft tissue defects in the future.


Assuntos
Células-Tronco Mesenquimais , Polilisina , Polilisina/metabolismo , Polilisina/farmacologia , Ácido Hialurônico/farmacologia , Microesferas , Células Endoteliais , Angiogênese , Diferenciação Celular , Gengiva/metabolismo , Células-Tronco , Colágeno/metabolismo , Engenharia Tecidual
17.
Ecotoxicol Environ Saf ; 255: 114763, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37032576

RESUMO

Methyl tertiary-butyl ether (MTBE) is a new unleaded gasoline additive, which is considered to be associated with abnormal lipid metabolism in many studies, but the metabolic characteristics and mechanism are still unclear. To observe the characteristics of lipid metabolism induced by MTBE and possible pathways, 21 male Wistar rats got intragastric administration for 24 weeks. The serum lipid metabolism indexes and metabolites were analyzed separately by a biochemical analyzer and untargeted metabolomics. And found that serum high-density lipoprotein cholesterol (HDL-C) levels in the exposure group were significantly reduced, and serum very low-density lipoprotein (VLDL) levels were significantly increased. In untargeted metabolomics, 190 differential metabolites were obtained. Among them, 23 metabolites were found to show the same trend in MTBE exposure groups, which might play a key role in systemic energy metabolism. Further metabolic pathways analysis showed that D-Glutamine, D-glutamate metabolism, and the other three pathways were affected by MTBE significantly. Therefore, we evaluated serum glutamine and glutamate levels and found that MTBE exposure significantly reduced glutamine levels and increased glutamate levels in rat serum and L-02 cells. Further, the key regulatory gene of glutamine metabolism, glutaminase 1 isoform (GLS1), was significantly up-regulated in rat liver and L-02 cells exposed to MTBE. While the effect of glutamine and glutamate metabolism induced by MTBE could be weakened by BPTES, an antagonist of GLS1. In conclusion, our results indicated that MTBE exposure could change the level of glutamine metabolism by promoting GLS1 expression and ultimately lead to abnormal lipid metabolism.


Assuntos
Poluentes Atmosféricos , Transtornos do Metabolismo dos Lipídeos , Éteres Metílicos , Ratos , Masculino , Animais , Poluentes Atmosféricos/metabolismo , Glutaminase/metabolismo , Metabolismo dos Lipídeos , Glutamina , Regulação para Cima , Ratos Wistar , Éteres Metílicos/metabolismo , Isoformas de Proteínas/metabolismo
18.
Bioengineering (Basel) ; 10(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37106633

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxypropionate) [P(3HB-co-3HP)] is a biodegradable and biocompatible polyester with improved and expanded material properties compared with poly(3-hydroxybutyrate) (PHB). This study engineered a robust malonyl-CoA pathway in Cupriavidus necator for the efficient supply of a 3HP monomer, and could achieve the production of [P(3HB-co-3HP)] from variable oil substrates. Flask level experiments followed by product purification and characterization found the optimal fermentation condition (soybean oil as carbon source, 0.5 g/L arabinose as induction level) in general consideration of the PHA content, PHA titer and 3HP molar fraction. A 5 L fed-batch fermentation (72 h) further increased the dry cell weight (DCW) to 6.08 g/L, the titer of [P(3HB-co-3HP)] to 3.11 g/L and the 3HP molar fraction to 32.25%. Further improving the 3HP molar fraction by increasing arabinose induction failed as the engineered malonyl-CoA pathway was not properly expressed under the high-level induction condition. With several promising advantages (broader range of economic oil substrates, no need for expensive supplementations such as alanine and VB12), this study indicated a candidate route for the industrial level production of [P(3HB-co-3HP)]. For future prospects, further studies are needed to further improve the strain and the fermentation process and expand the range of relative products.

19.
Pediatr Surg Int ; 39(1): 98, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725741

RESUMO

BACKGROUND AND PURPOSE: If the preoperative pathological information is inadequate, a risk classification may not be able to be determined for some patients with neuroblastoma. Our objectives were to include imaging factors, serum biomarkers, and demographic factors in a nomogram to distinguish high-risk patients before surgical resection based on the COG classification. METHOD: A total of 106 patients were included in the study. Of these, patients with clinicopathologically confirmed neuroblastoma at Tianjin Children's Hospital from January 2013 to November 2021 formed the training cohort (n = 82) for nomogram development, and those patients from January 2010 to December 2013 formed the validation cohort (n = 24) to confirm the model's performance. RESULT: On multivariate analysis of the primary cohort, independent factors for high risk were the presence of distant metastasis (p = 0.004), lactate dehydrogenase (LDH) (p = 0.009), and tumor volume (p = 0.033), which were all selected into the nomogram. The calibration curve for probability showed good agreement between prediction by nomogram and actual observation. The C-index of the nomogram was 0.95 95% [0.916-0.99]. Application of the nomogram in the validation cohort still gave good discrimination and good calibration. CONCLUSION: Three independent factors including the presence of distant metastasis, lactate dehydrogenase (LDH), and tumor volume are associated with high-risk neuroblastoma and selected into the nomogram. The novel nomogram has the flexibility to apply a clinically suitable cutoff to identify high-risk neuroblastoma patients despite inadequate preoperative pathological information. The nomogram can allow these patients to be offered suitable induction chemotherapy regimens and surgical plans. LEVELS OF EVIDENCE: Level III.


Assuntos
Neuroblastoma , Nomogramas , Criança , Humanos , Biópsia/normas , Lactato Desidrogenases , Neuroblastoma/patologia , Neuroblastoma/cirurgia , Risco , Medição de Risco
20.
Hortic Res ; 10(1): uhac230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643749

RESUMO

Genome duplication events, comprising whole-genome duplication and single-gene duplication, produce a complex genomic context leading to multiple levels of genetic changes. However, the characteristics of m6A modification, the most widespread internal eukaryotic mRNA modification, in polyploid species are still poorly understood. This study revealed the characteristics of m6A methylomes within the early formation and following the evolution of allopolyploid Brassica napus. We found a complex relationship between m6A modification abundance and gene expression level depending on the degree of enrichment or presence/absence of m6A modification. Overall, the m6A genes had lower gene expression levels than the non-m6A genes. Allopolyploidization may change the expression divergence of duplicated gene pairs with identical m6A patterns and diverged m6A patterns. Compared with duplicated genes, singletons with a higher evolutionary rate exhibited higher m6A modification. Five kinds of duplicated genes exhibited distinct distributions of m6A modifications in transcripts and gene expression level. In particular, tandem duplication-derived genes showed unique m6A modification enrichment around the transcript start site. Active histone modifications (H3K27ac and H3K4me3) but not DNA methylation were enriched around genes of m6A peaks. These findings provide a new understanding of the features of m 6A modification and gene expression regulation in allopolyploid plants with sophisticated genomic architecture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA