Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Commun ; 15(1): 5238, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898098

RESUMO

While sanguinarine has gained recognition for antimicrobial and antineoplastic activities, its complex conjugated structure and low abundance in plants impede broad applications. Here, we demonstrate the complete biosynthesis of sanguinarine and halogenated derivatives using highly engineered yeast strains. To overcome sanguinarine cytotoxicity, we establish a splicing intein-mediated temperature-responsive gene expression system (SIMTeGES), a simple strategy that decouples cell growth from product synthesis without sacrificing protein activity. To debottleneck sanguinarine biosynthesis, we identify two reticuline oxidases and facilitated functional expression of flavoproteins and cytochrome P450 enzymes via protein molecular engineering. After comprehensive metabolic engineering, we report the production of sanguinarine at a titer of 448.64 mg L-1. Additionally, our engineered strain enables the biosynthesis of fluorinated sanguinarine, showcasing the biotransformation of halogenated derivatives through more than 15 biocatalytic steps. This work serves as a blueprint for utilizing yeast as a scalable platform for biomanufacturing diverse benzylisoquinoline alkaloids and derivatives.


Assuntos
Benzofenantridinas , Isoquinolinas , Engenharia Metabólica , Saccharomyces cerevisiae , Temperatura , Isoquinolinas/metabolismo , Isoquinolinas/química , Benzofenantridinas/metabolismo , Benzofenantridinas/biossíntese , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Engenharia Metabólica/métodos , Halogenação , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética
2.
Chem Biol Interact ; 397: 111077, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810818

RESUMO

Intestinal barrier dysfunction is a significant complication induced by sepsis, yet therapeutic strategies targeting such dysfunction remain inadequate. This study investigates the protective effects of Gypenoside XLIX (Gyp XLIX) against intestinal damage induced by sepsis. Septic intestinal injury in mice was induced by cecum ligation and puncture (CLP) surgery. The biological activity and potential mechanisms of Gyp XLIX were explored through intraperitoneal injection of Gyp XLIX (40 mg/kg). The study demonstrates that Gyp XLIX improves the pathological structural damage of the intestine and increases tight junction protein expression as well as the number of cup cells. Through activation of the nuclear factor erythroid 2-related factor 2 - Kelch-like ECH-associated protein 1 (Nrf2-Keap1) pathway, Gyp XLIX enhances antioxidant enzyme levels while reducing the excessive accumulation of reactive oxygen species (ROS). In addition, Gyp XLIX effectively alleviates sepsis-induced intestinal inflammation by inhibiting the nuclear factor kappa B (NF-κB) pathway and activation of the NLRP3 inflammasome. Moreover, Gyp XLIX inhibits cell death through modifying phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, further enhancing its ability to shield the intestinal barrier. The combined action of these molecular mechanisms promotes the restoration of immune balance and reduces excessive autophagy activity induced under septic conditions. In summary, Gyp XLIX exhibits a significant preventive action against intestinal damage brought on by sepsis, with its mechanisms involving the improvement of intestinal barrier function, antioxidative stress, inhibition of inflammatory response, and cell apoptosis. This research offers a potential strategy for addressing intestinal barrier impairment brought on by sepsis.


Assuntos
Apoptose , Autofagia , Gynostemma , Inflamação , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Sepse , Animais , Estresse Oxidativo/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/complicações , Camundongos , Gynostemma/química , Masculino , Inflamação/tratamento farmacológico , Inflamação/patologia , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/farmacologia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Inflamassomos/metabolismo
3.
Toxicon ; 244: 107755, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740097

RESUMO

Avermectin (AVM) has been utilized extensively in agricultural production since it is a low-toxicity pesticide. However, the pollution caused by its residues to fisheries aquaculture has been neglected. As an abundant polyphenolic substance in plants, ferulic acid (FA) possesses anti-inflammatory and antioxidant effects. The goal of the study is to assess the FA's ability to reduce liver damage in carp brought on by AVM exposure. Four groups of carp were created at random: the control group; the AVM group; the FA group; and the FA + AVM group. On day 30, and the liver tissues of carp were collected and examined for the detection of four items of blood lipid as well as the activity of the antioxidant enzymes catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) in carp liver tissues by biochemical kits, and the transcript levels of indicators of oxidative stress, inflammation and apoptosis by qPCR. The results showed that liver injury, inflammation, oxidative stress, and apoptosis were attenuated in the FA + AVM group compared to the AVM group. In summary, dietary addition of FA could ameliorate the hepatotoxicity caused by AVM in carp by alleviating oxidative stress, inflammation, apoptosis in liver tissues.


Assuntos
Apoptose , Carpas , Ácidos Cumáricos , Inflamação , Ivermectina , Fígado , Estresse Oxidativo , Animais , Ácidos Cumáricos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Apoptose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Suplementos Nutricionais , Antioxidantes/farmacologia
4.
Inflammation ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717633

RESUMO

Currently, treatment options for acute lung injury (ALI) are limited. Gypenoside XLIX (Gyp-XLIX) is known for its anti-inflammatory properties, but there is a lack of extensive research on its effects against ALI. This study induced ALI in mice through cecal ligation and puncture surgery and investigated the biological activity and potential mechanisms of Gypenoside XLIX (40 mg/kg) by intraperitoneal injection. The in vitro ALI model was established using mouse lung epithelial (MLE-12) cells stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Various methods, including Hematoxylin and Eosin (H&E) staining, biochemical assay kits, Quantitative Polymerase Chain Reaction (qPCR) analysis, Western blotting, Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) assay, immunofluorescence, and flow cytometry, were employed for this research. The results indicated that pretreatment with Gypenoside XLIX significantly alleviated pathological damage in mouse lung tissues and reduced the expression levels of inflammatory factors. Additionally, Gypenoside XLIX inhibited ROS levels and NLRP3 inflammasome, possibly mediated by the Sirt1/Nrf2 signaling pathway. Moreover, Gypenoside XLIX significantly inhibited sepsis-induced lung cell apoptosis and excessive autophagy of mitochondria. Specifically, it suppressed mitochondrial pathway apoptosis and the Pink1/Parkin pathway of mitochondrial autophagy. These findings reveal the multifaceted effects of Gypenoside XLIX in anti-inflammatory, antioxidative, and inhibition of cell apoptosis and autophagy. This provides strong support for its therapeutic potential in sepsis-related lung injuries.

5.
Int Immunopharmacol ; 131: 111872, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38503011

RESUMO

Liver is one of the vital organs in the human body and liver injury will have a very serious impact on human damage. Gypenoside XLIX is a PPAR-α activator that inhibits the activation of the NF-κB signaling pathway. The components of XLIX have pharmacological effects such as cardiovascular protection, antihypoxia, anti-tumor and anti-aging. In this study, we used cecum ligation and puncture (CLP) was used to induce in vivo mice hepatic injury, and lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells, evaluated whether Gypenoside XLIX could have a palliative effect on sepsis-induced acute liver injury via NF-κB/PPAR-α/NLRP3. In order to gain insight into these mechanisms, six groups were created in vivo: the Contol group, the Sham group, the CLP group, the CLP + XLIX group (40 mg/kg) and the Sham + XLIX (40 mg/kg) group, and the CLP + DEX (2 mg/kg) group. Three groups were created in vitro: Control, LPS, LPS + XLIX (40 µM). The analytical methods used included H&E staining, qPCR, reactive oxygen species (ROS), oil red O staining, and Western Blot. The results showed that XLIX attenuated hepatic inflammatory injury in mice with toxic liver disease through inhibition of the TLR4-mediated NF-κB pathway, attenuated lipid accumulation through activation of PPAR-α, and attenuated hepatic pyroptosis by inhibiting NLRP3 production. Regarding the imbalance between oxidative and antioxidant defenses due to septic liver injury, XLIX reduced liver oxidative stress-related biomarkers (ALT, AST), reduced ROS accumulation, decreased the amount of malondialdehyde (MDA) produced by lipid peroxidation, and increased the levels of antioxidant enzymes such as glutathione (GSH) and catalase (CAT). Our results demonstrate that XLIX can indeed attenuate septic liver injury. This is extremely important for future studies on XLIX and sepsis, and provides a potential pathway for the treatment of acute liver injury.


Assuntos
NF-kappa B , Saponinas , Sepse , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Antioxidantes , PPAR alfa/metabolismo , Lipopolissacarídeos/farmacologia , Espécies Reativas de Oxigênio , Fígado/patologia , Glutationa , Sepse/patologia
6.
Aquat Toxicol ; 268: 106859, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342007

RESUMO

Flavonoid quercetin (QUE) has biological activities of anti-oxidation, anti-inflammation and anti-apoptosis, however, its protective effects against avermectin (AVM) induced liver toxicity in carp remains unclear. The objective of this research is to explore the biologically potent effects of QUE in AVM-induced hepatotoxicity in carp and its underlying mechanism. Therefore, we established a liver injury model in carp induced by AVM to evaluate QUE against AVM induced liver toxicity in carp. In this investigation, AVM dosage was determined as 2.404 µg/L for both groups, and an experimentation of 30 days duration was carried out. Various methods including hematoxylin and eosin (H&E) staining, biochemical kits, real-time quantitative PCR (qRT-PCR), western blotting, TUNEL, reactive oxygen species (ROS) staining, immunofluorescence (Hoseinifar, et al.,), and oil red O staining were used in this study. Results showed that the growth inhibition of carp was relieved in the QUE treatment group comparing to the AVM group. In the QUE treatment group, there was a significant decrease in the levels of ALT and AST in carp liver tissue. Additionally, the histopathological damage and lipid accumulation were alleviated compared to the AVM group. Moreover, QUE prevented AVM induced decrease in the activities of antioxidant enzymes of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), glutathione (GSH), catalase (CAT) and the accumulation of reactive oxygen species (ROS), but reduced accumulation of malondialdehyde (MDA). In addition, the mRNA levels of liver pro-inflammatory factors of tumor necrosis factor-α (TNF-α), interleukin-1ß (iL-1ß), interleukin-6 (iL-6), interleukin-10 (iL-10) and the protein levels of NOD-like receptor protein 3 (NLRP3) inflammasome were significantly down-regulated in the QUE treatment group in comparison to the AVM group. We also found that QUE could affect the expression of Bcl2-associated x (Bax), B-cell lymphoma-2 (Bcl-2), cleaved-cysteinyl aspartate specific proteinase (CCaspase3) key apoptotic proteins and TUNEL-labeled apoptotic hepatocytes by regulating SIRT1/FOXO3a signal pathway. In summary, QUE alleviated the growth inhibition, liver oxidative damage, lipid accumulation, inflammatory response, and apoptosis of carp induced by AVM. QUE is a potential protective agent against liver injury induced by AVM in carp.


Assuntos
Carpas , Doença Hepática Induzida por Substâncias e Drogas , Ivermectina/análogos & derivados , Poluentes Químicos da Água , Animais , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Carpas/metabolismo , Poluentes Químicos da Água/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Lipídeos
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166925, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38084873

RESUMO

Pancreatic adenocarcinoma (PAAD), a common digestive malignant tumor, presents high mortality rates and limited treatment methods. Currently, chemotherapy remains the main therapy method for patients with PAAD. As a classical chemotherapy drug, cisplatin (DDP) is limited by dose-related toxicity in patients with PAAD. In this study, we demonstrated that TGM2 may be a treatment and prognosis marker in pancreatic cancer patients. Co-treatment of low dose of DDP and GK921, a transglutaminase (TGM2) inhibitor, is capable of synergistically inhibiting the PAAD cell viability and proliferation in vitro and in vivo. Based on in vitro study, GK921 inhibited the epithelial-to-mesenchymal transition (EMT) induced by TGM2 as well as aggravated cell cycle arrest and apoptosis resulted from DDP, making pancreatic cancer cells more sensible to DDP. Our results showed that GK921 increased the protein levels regarding E-cadherin as well as decreased the protein level regarding Snail2, N-cadherin, which indicated that GK921 inhibited EMT in pancreatic cancer cells. Snail2 overexpression inhibited GK921/DDP-induced cell apoptosis, as well as mitigated the GK921/DDP-caused cell death and the EMT inhibition. In vivo studies also found GK921/DDP combination can further inhibit the growth of PAAD without significantly side effects. To sum up, we showed that GK921 increased PAAD cells sensitivity to DDP via inhibiting EMT. As revealed, DDP/GK921 co-treatment could promisingly serve for treating PAAD patients.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Cisplatino/farmacologia , Adenocarcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico
8.
Medicina (Kaunas) ; 59(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37763685

RESUMO

Dilated cardiomyopathy (DCM), a primary myocardial disease, is characterized by dilation of the left or both ventricles and systolic dysfunction with or without congestive heart failure. DCM per se is a well-recognized risk factor for sudden cardiac death and poor surgical outcomes following noncardiac surgery. Surgical trauma/stress represents unique challenges for DCM patient management. Unfortunately, there is a big knowledge gap in managing DCM patients undergoing non-cardiac surgery. Therefore, the aim of our review is to provide basic facts and current advances in DCM, as well as a practical guideline to perioperative care providers, for the management of surgical patients with DCM, who are quite rare compared with the general surgical population. This review summarizes recent advances in the medical management of DCM as well as perioperative assessment and management strategies for DCM patients undergoing noncardiac surgery. Optimal surgical outcomes depend on multiple-disciplinary care to minimize perioperative cardiovascular disturbances.


Assuntos
Anestésicos , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/cirurgia , Ventrículos do Coração , Conhecimento
9.
Artigo em Inglês | MEDLINE | ID: mdl-37148852

RESUMO

A rapid, convenient, and specific liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantification of ursodeoxycholic acid (UDCA), and its major metabolites, glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) in human plasma. Methanol was chosen as surrogate matrix for preparation the calibrators to establish calibration curves. Isotope internal standard was used for each analyte. After plasma samples were deproteinized with methanol, the post-treatment samples were analyzed on a ZORBAX SB-C18 column (2.1 × 50 mm, 1.8 µm) with 2 mM ammonium acetate and acetonitrile as mobile phase at a flow rate of 0.5 mL/min. Detection was performed on a triple quadrupole mass spectrometer operating in multiple reaction monitoring (MRM) employing negative ESI interface using API5500 triple quadrupole tandem mass spectrometer system, with the transitions set at m/z 391.4 â†’ m/z 391.4, m/z 448.3 â†’ m/z 73.9, m/z 498.4 â†’ m/z 80.1, m/z 395.3 â†’ m/z 395.3, m/z 453.3 â†’ m/z 74.0, and m/z 503.2 â†’ m/z 79.9 for UDCA, GUDCA, TUDCA, UDCA-d4, GUDCA-d5, and TUDCA-d5, respectively. The calibration curve ranges were 5.00-2500 ng/mL for UDCA and GUDCA and 0.500-250 ng/mL for TUDCA. The intra- and inter-day precision was within 7.00% in terms of relative standard deviation (RSD%) and the accuracy within 11.75% in terms of relative error. The selectivity, sensitivity, extraction recovery, matrix effect, dilution reliability, and stability were within the acceptable range. The method was successfully applied to a pharmacokinetic study in 12 healthy Chinese volunteers after oral administration of 250 mg UDCA.


Assuntos
Metanol , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Ácido Ursodesoxicólico
10.
Front Oncol ; 13: 1103145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035165

RESUMO

Objective: As a common breast cancer-related complaint, pathological nipple discharge (PND) detected by ductoscopy is often missed diagnosed. Deep learning techniques have enabled great advances in clinical imaging but are rarely applied in breast cancer with PND. This study aimed to design and validate an Intelligent Ductoscopy for Breast Cancer Diagnostic System (IDBCS) for breast cancer diagnosis by analyzing real-time imaging data acquired by ductoscopy. Materials and methods: The present multicenter, case-control trial was carried out in 6 hospitals in China. Images for consecutive patients, aged ≥18 years, with no previous ductoscopy, were obtained from the involved hospitals. All individuals with PND confirmed from breast lesions by ductoscopy were eligible. Images from Beijing Chao-Yang Hospital were randomly assigned (8:2) to the training (IDBCS development) and internal validation (performance evaluation of the IDBCS) datasets. Diagnostic performance was further assessed with internal and prospective validation datasets from Beijing Chao-Yang Hospital; further external validation was carried out with datasets from 5 primary care hospitals. Diagnostic accuracies, sensitivities, specificities, and positive and negative predictive values for IDBCS and endoscopists (expert, competent, or trainee) in the detection of malignant lesions were obtained by the Clopper-Pearson method. Results: Totally 11305 ductoscopy images in 1072 patients were utilized for developing and testing the IDBCS. Area under the curves (AUCs) in breast cancer detection were 0·975 (95%CI 0·899-0·998) and 0·954 (95%CI 0·925-0·975) in the internal validation and prospective datasets, respectively, and ranged between 0·922 (95%CI 0·866-0·960) and 0·965 (95%CI 0·892-0·994) in the 5 external validation datasets. The IDBCS had superior diagnostic accuracy compared with expert (0.912 [95%CI 0.839-0.959] vs 0.726 [0.672-0.775]; p<0.001), competent (0.699 [95%CI 0.645-0.750], p<0.001), and trainee (0.703 [95%CI 0.648-0.753], p<0.001) endoscopists. Conclusions: IDBCS outperforms clinical oncologists, achieving high accuracy in diagnosing breast cancer with PND. The novel system could help endoscopists improve their diagnostic efficacy in breast cancer diagnosis.

11.
Phys Chem Chem Phys ; 25(15): 10741-10748, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37006172

RESUMO

Human telomerase exhibits significant activity in cancer cells relative to normal cells, which contributes to the immortal proliferation of cancer cells. To counter this, the stabilization of G-quadruplexes formed in the guanine-rich sequence of the cancer cell chromosome has emerged as a promising avenue for anti-cancer therapy. Berberine (BER), an alkaloid that is derived from traditional Chinese medicines, has shown potential for stabilizing G-quadruplexes. To investigate the atomic interactions between G-quadruplexes and BER and its derivatives, molecular dynamics simulations were conducted. Modeling the interactions between G-quadruplexes and ligands accurately is challenging due to the strong negative charge of nucleic acids. Thus, various force fields and charge models for the G-quadruplex and ligands were tested to obtain precise simulation results. The binding energies were calculated by a combination of molecular mechanics/generalized Born surface area and interaction entropy methods, and the calculated results correlated well with experimental results. B-factor and hydrogen bond analyses demonstrated that the G-quadruplex was more stable in the presence of ligands than in the absence of ligands. Calculation of the binding free energy showed that the BER derivatives bind to a G-quadruplex with higher affinity than that of BER. The breakdown of the binding free energy to per-nucleotide energies suggested that the first G-tetrad played a primary role in binding. Additionally, energy and geometric properties analyses indicated that van der Waals interactions were the most favorable interactions between the derivatives and the G-quadruplexes. Overall, these findings provide crucial atomic-level insights into the binding of G-quadruplexes and their inhibitors.


Assuntos
Alcaloides , Berberina , Quadruplex G , Humanos , Berberina/química , Simulação de Dinâmica Molecular
12.
Biochem Cell Biol ; 101(4): 361-376, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084412

RESUMO

Epigenetic regulation contributes to human health and disease, especially cancer, but the mechanisms of many epigenetic regulators remain obscure. Most research is focused on gene regulatory processes, such as mRNA translation and DNA damage repair, rather than the effects on biological functions like mitochondrial activity and oxidative phosphorylation. Here, we identified an essential role for the histone chaperone structure-specific recognition protein 1 (SSRP1) in mitochondrial oxidative respiration in hepatocellular carcinoma, and found that SSRP1 suppression led to mitochondrial damage and decreased oxidative respiration. Further, we focused on TNF receptor-associated protein 1 (TRAP1), the only member of the heat shock protein 90 (HSP90) family, which directly interacts with selected respiratory complexes and affects their stability and activity. We confirmed that SSRP1 downregulation caused a decrease in TRAP1 expression at both the mRNA and protein levels. A chromatin immunoprecipitation assay also showed that SSRP1 could deposit in the TRAP1 promoter region, indicating that SSRP1 maintains mitochondrial function and reactive oxygen species levels through TRAP1. Additionally, rescue experiments and animal experiments confirmed the mechanism of SSRP1 and TRAP1 interaction. In summary, we identified a new mechanism that connects mitochondrial respiration and apoptosis, via SSRP1.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/metabolismo , Fator 1 Associado a Receptor de TNF/metabolismo , Chaperonas de Histonas/metabolismo , Epigênese Genética , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Apoptose/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo
13.
Gels ; 9(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36826316

RESUMO

Oral and maxillofacial diseases have an important impact on local function, facial appearance, and general health. As a multifunctional platform, hydrogels are widely used in the biomedical field due to their excellent physicochemical properties. In recent years, a large number of studies have been conducted to adapt hydrogels to the complex oral and maxillofacial environment by modulating their pore size, swelling, degradability, stimulus-response properties, etc. Meanwhile, many studies have attempted to use hydrogels as drug delivery carriers to load drugs, cytokines, and stem cells for antibacterial, anticancer, and tissue regeneration applications in oral and maxillofacial regions. This paper reviews the application and research progress of hydrogel-based drug delivery systems in the treatment of oral and maxillofacial diseases such as caries, endodontic diseases, periodontal diseases, maxillofacial bone diseases, mucosal diseases, oral cancer, etc. The characteristics and applications of hydrogels and drug-delivery systems employed for the treatment of different diseases are discussed in order to provide a reference for further research on hydrogel drug-delivery systems in the future.

14.
Mol Biol Rep ; 50(3): 2847-2856, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36609753

RESUMO

Recently, researches have revealed the key roles of the cytoskeleton in the occurrence and development of multiple diseases, suggesting that targeting the cytoskeleton is a viable approach for treating numerous refractory diseases. The cytoskeleton is a highly structured and complex network composed of actin filaments, microtubules, and intermediate filaments. In normal cells, these three cytoskeleton components are highly integrated and coordinated. However, the cytoskeleton undergoes drastic remodeling in cytoskeleton-related diseases, causing changes in cell polarity, affecting the cell cycle, leading to senescent diseases, and influencing cell migration to accelerate cancer metastasis. Additionally, mutations or abnormalities in cytoskeletal proteins and their related proteins are closely associated with several congenital diseases. Therefore, this review summarizes the roles of the cytoskeleton in cytoskeleton-related diseases as well as its potential roles in disease treatment to provide insights regarding the physiological functions and pathological roles of the cytoskeleton.


Assuntos
Citoesqueleto , Microtúbulos , Humanos , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Filamentos Intermediários/metabolismo , Movimento Celular/fisiologia , Actinas/metabolismo
15.
Chin J Integr Med ; 29(2): 170-178, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36484920

RESUMO

OBJECTIVE: To explore the protective effect and possible mechanisms of bloodletting acupuncture at Jing-well points (BAJP) pre-treatment on acute hypobaric hypoxia (AHH)-induced myocardium injury rat. METHODS: Seventy-five rats were randomly divided into 5 groups by a random number table: a control group (n=15), a model group (n=15), a BAJP group (n=15), a BAJP+3-methyladenine (3-MA) group (n=15), and a BANA (bloodletting at nonacupoint; tail bleeding, n=15) group. Except for the control group, the AHH rat model was established in the other groups, and the corresponding treatment methods were adopted. Enzyme-linked immunosorbent assay (ELISA) was used to detect creatine kinase isoenzyme MB (CK-MB) and cardiac troponins I (CTnI) levels in serum and superoxide dismutase (SOD) and malondialdehyde (MDA) levels in myocardial tissue. Hematoxylin-eosin (HE) staining was used to observe myocardial injury, and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining was used to observe cell apoptosis. Transmission electron microscopy detection was used to observe mitochondrial damage and autophagosomes in the myocardium. The mitochondrial membrane potential of the myocardium was analyzed with the fluorescent dye JC-1. Mitochondrial respiratory chain complex (complex I, III, and IV) activities and ATPase in the myocardium were detected by mitochondrial respiratory chain complex assay kits. Western blot analysis was used to detect the autophagy index and hypoxia inducible factor-1α (HIF-1α)/Bcl-2 and adenovirus E1B 19k Da-interacting protein 3 (BNIP3) signaling. RESULTS: BAJP reduced myocardial injury and inhibited myocardial cell apoptosis in AHH rats. BAJP pretreatment decreased MDA levels and increased SOD levels in AHH rats (all P<0.01). Moreover, BAJP pretreatment increased the mitochondrial membrane potential (P<0.01), mitochondrial respiratory chain complex (complexes I, III, and IV) activities (P<0.01), and mitochondrial ATPase activity in AHH rats (P<0.05). The results from electron microscopy demonstrated that BAJP pretreatment improved mitochondrial swelling and increased the autophagosome number in the myocardium of AHH rats. In addition, BAJP pretreatment activated the HIF-1α/BNIP3 pathway and autophagy. Finally, the results of using 3-MA to inhibit autophagy in BAJP-treated AHH rats showed that suppression of autophagy attenuated the treatment effects of BAJP in AHH rats, further proving that autophagy constitutes a potential target for BAJP treatment of AHH. CONCLUSION: BAJP is an effective treatment for AHH-induced myocardial injury, and the mechanism might involve increasing HIF-1α/BNIP3 signaling-mediated autophagy and decreasing oxidative stress.


Assuntos
Terapia por Acupuntura , Sangria , Animais , Ratos , Altitude , Apoptose , Autofagia , Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/farmacologia , Estresse Oxidativo , Ratos Sprague-Dawley
16.
Clin Breast Cancer ; 23(1): 71-83, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36289041

RESUMO

BACKGROUND: The therapeutic effect of adriamycin (ADM) has been limited by chemoresistance in breast cancer (BC). Circular RNAs are involved in resistance regulation by mediating the miRNA/mRNA axis. Circ_0001667 enhanced ADM resistance via the miR-4458/NCOA3 axis in BC. This study was to investigate the other miRNA/mRNA network for circ_0001667. METHODS: The level detection of circ_0001667, microRNA-193a-5p (miR-193a-5p) or Ras-Related Protein 2a (Rap2A) was conducted by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Half inhibitory concentration (IC50) of ADM was detected through cell counting kit-8 (CCK-8) assay. The proliferation analysis was performed by colony formation assay and EdU assay. Flow cytometry was used for assessing apoptosis. Transwell assay was applied for examining cell migration and invasion. The protein detection was carried out by western blot. In vivo assay was performed using xenograft tumor model. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were implemented to validate the target interaction. RESULTS: Circ_0001667 was highly expressed in ADM-resistant BC tissues and cells. Downregulation of circ_0001667 reduced ADM resistance and inhibited proliferation, migration, invasion in ADM-resistant BC cells. Tumor growth was repressed by circ_0001667 knockdown in ADM-resistant xenograft model. Circ_0001667 has induced the sponge effect on miR-193a-5p. The circ_0001667 function was partly achieved by targeting miR-193a-5p. Rap2A expression was positively regulated by circ_0001667 through sponging miR-193a-5p. The miR-193a-5p upregulation restrained chemoresistance and BC progression by the downregulation of Rap2A. CONCLUSION: All results unraveled that circ_0001667 contributed to ADM resistance and tumor development in BC via the miR-193a-5p-mediated Rap2A expression change, providing a novel regulatory mechanism for circ_0001667.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Circular , Proteínas rap de Ligação ao GTP , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proliferação de Células , Regulação para Baixo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , MicroRNAs/genética , Regulação para Cima , RNA Circular/genética
17.
Front Immunol ; 14: 1276280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259456

RESUMO

Background: Breast cancer is one of the most serious and prevalent malignancies. Zinc is commonly known to play a crucial role in the development and progression of breast cancer; however, the detailed mechanisms underlying this role are not well understood. This study aimed to develop a zinc metabolism-related gene (ZMRG) signature based on a multi-database study to predict patient prognosis and investigate the relationship between drug therapy response and immune enrichment. Methods: Data for breast cancer samples from The Cancer Genome Atlas and Gene Expression Omnibus databases were screened for zinc metabolism-related genes using the Molecular Signature Database. Cox and Least Absolute Shrinkage and Selection Operator regressions were performed to construct a ZMRG signature. To assess the predictive performance of the gene signature, Kaplan-Meier analysis and receiver operating characteristic curves were used. Additionally, we utilised single-sample gene set enrichment analysis, the Tumour Immune Estimation Resource, the Genomics of Drug Sensitivity in Cancer database, and the Cancer Therapeutics Response Portal to investigate the association between the tumour microenvironment and drug sensitivity. Quantitative PCR was used to assess the expression of each gene in the signature in breast cancer cell lines and patient samples. Results: Five ZMRGs were identified (ATP7B, BGLAP, P2RX4, SLC39A11, and TH) and a risk profile was constructed for each. Two risk groups, high- and low-risk, were identified in this way, and the high-risk score subgroups were found to have worse prognosis. This risk profile was validated using the GSE42568 dataset. Tumour microenvironment and drug sensitivity analyses showed that the expression of these five ZMRGs was significantly associated with immune response. The high-risk group showed substantial immune cell infiltration and enrichment of immune pathways, and patients were more sensitive to drugs commonly used in breast cancer. Conclusion: The ZMRG signature represents a new prognostic predictor for patients with breast cancer, and may also provide new insights into individualised treatment of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Zinco , Prognóstico , Bases de Dados de Compostos Químicos , Bases de Dados Factuais , Microambiente Tumoral/genética
18.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166529, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36041715

RESUMO

RSL3 is a synthetic molecule that inactivates glutathione peroxidase 4 to induce ferroptosis. However, its effect on glioma stem cells (GSC) remains unclear. In this study, we found that RSL3 significantly suppressed GSC proliferation and induced their differentiation into astrocytes, which was accompanied by the downregulation of stemness-related markers, including Nestin and Sox2. Combined transcriptome and proteome analyses further revealed that RSL3 promoted GSC differentiation by suppressing transglutaminase 2 (Tgm2), but not by ferroptosis-related pathways. Tgm2 overexpression in CSC2078 cells rescued the changes in stemness-related markers and differentiation caused by RSL3, which was mediated by inhibitor of DNA binding 1 (ID1) activation. Further studies identified ID1 as a downstream signaling target of Tgm2. Blocking the phosphoinositide-3 kinase (PI3K)/Akt pathway with LY294002 suppressed PI3K, p-Akt, and ID1 levels but not Tgm2. Tgm2 overexpression abrogated the changes in PI3K, p-Akt, and ID1 levels caused by LY294002. Taken together, we demonstrate that RSL3 does not induce ferroptosis; instead, it inhibits GSC proliferation and triggers their differentiation by suppressing the Tgm2/Akt/ID1 signaling axis.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Diferenciação Celular , DNA , Glioma/genética , Glioma/metabolismo , Humanos , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo , Nestina , Fosfatidilinositol 3-Quinase , Fosfatidilinositóis , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteína 2 Glutamina gama-Glutamiltransferase , Proteoma , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
Neurosci Lett ; 783: 136725, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697158

RESUMO

Oxidative stress plays essential role in the pathogenesis of Alzheimer's disease, and vitamin D3 (VD3) is a nutrient with neuroprotective and antioxidant activities. The present study aimed to confirm the neuroprotective effect and the ameliorative effect of cortical oxidative stress of VD3 in APP/PS1 transgenic mice. APP/PS1 mice were treated with VD3 for 20 weeks. After treatment, Morris Water Maze test was used to evaluate cognitive level. Western blotting was used to determine APP, p-tau, tau and PI3K/AKT/Nrf2 pathway-related protein expression levels. Immunohistochemical staining was performed to determine the levels of ß amyloid peptide (Aß) deposition. Enzyme linked immunosorbent assay was used to determine the 25(OH)D3 levels and oxidative stress status. Our results showed that treatment with VD3 ameliorated behavioral deficits of APP/PS1 mice. In addition, the administration of VD3 significantly increased the cortical 25(OH)D3 levels, while reducing the levels of cortical Aß deposition and decreasing the expression levels of cortical APP, tau and p-tau in APP/PS1 mice. Moreover, VD3 protected the cortex against oxidative stress by enhancing the levels of superoxide dismutase, glutathione and total antioxidant capacity, and downregulating the malondialdehyde levels. Furthermore, VD3 clearly activated the PI3K/AKT/Nrf2 pathway, thereby elevating the expression levels of HO1 and NQO1. We concluded that VD3 improved cognitive function and cortical Alzheimer-like pathology of APP/PS1 mice, which may be related to the inhibition of oxidative stress via activation the PI3K/AKT/Nrf2 pathway.


Assuntos
Doença de Alzheimer , Fosfatidilinositol 3-Quinases , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Cognição , Suplementos Nutricionais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
20.
Gland Surg ; 10(9): 2673-2685, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34733717

RESUMO

BACKGROUND: Three-dimensional electrical impedance tomography (3D EIT) is a novel, non-invasive, radiation-free imaging technology for breast cancer screening. This study aimed to identify characteristics and classification of 3D EIT breast cancer imaging that could provide diagnostic accuracy and prognostic value for breast cancer patients. METHODS: A total of 645 suspicious breast lesions [Breast Imaging Reporting and Data System (BI-RADS) III, IV, V] identified by mammography or ultrasound were examined with 3D EIT (MEIK, SIM-Technika, Yaroslavl, Russia). Breast tissue conductivity was quantified using MEIK 5.6 software. Diagnostic performance of visually interpreted 3D EIT was assessed using histology (surgical excision or vacuum core biopsy) and clinical follow-up. Kaplan-Meier analysis was used to calculate progression-free survival (PFS) and overall survival (OS) rates. Hazard ratio (HR) with a 95% confidence interval (95% CI) for various clinicopathological variables were determined using univariate and multivariate Cox regression models. RESULTS: Breast cancer was confirmed in 272 of 645 patients by histopathology and other diagnostic imaging modalities. Among the confirmed cases, 218 patients had positive 3D EIT findings. The sensitivity, specificity, accuracy, positive likelihood, and negative likelihood ratios of 3D EIT were 80.1%, 75.1%, 77.2%, 70.1%, and 83.8%. There were no significant differences in the diagnostic accuracy, sensitivity, or specificity between 3D EIT and mammography, ultrasound, or combined mammography and ultrasound. 3D EIT breast cancer images were classified into 3 different types, including Ia [non-complicated breast cancer (NCBC), 62 cases], Ib [complicated breast cancer (CBC), 131 cases], and Ic [edematous-infiltrative breast cancer (EIBC), 25 cases], which were associated with tumor size (P<0.001), TNM stage (P<0.001), and lymph node metastasis (P=0.012). At 5-year follow-up, multivariate analysis demonstrated that breast cancer 3D EIT imaging classification was an independent predictor for decreased OS (HR: 2.399, 95% CI: 1.035, 5.564, P=0.041) and PFS (HR: 2.836, 95% CI: 1.555, 5.172, P=0.012) in patients with breast cancer. CONCLUSIONS: 3D EIT breast cancer images were classified into 3 types based on different image characteristics. 3D EIT appeared to be useful in clinical diagnostic performance and prognostic evaluation in patients with breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA