Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Nat Commun ; 15(1): 7519, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39209876

RESUMO

Two-thirds of signaling hormones and one-third of approved drugs exert their effects by binding and modulating the G protein-coupled receptors (GPCRs) activation. While the activation mechanism for monomeric GPCRs has been well-established, little is known about GPCRs in dimeric form. Here, by combining transition pathway generation, extensive atomistic simulation-based Markov state models, and experimental signaling assays, we reveal an asymmetric, stepwise millisecond allosteric activation mechanism for the metabotropic glutamate receptor subtype 5 receptor (mGlu5), an obligate dimeric class C GPCR. The dynamic picture is presented that agonist binding induces dimeric ectodomains compaction, amplified by the precise association of the cysteine-rich domains, ultimately loosely bringing the intracellular 7-transmembrane (7TM) domains into proximity and establishing an asymmetric TM6-TM6 interface. The active inter-domain interface enhances their intra-domain flexibility, triggering the activation of micro-switches crucial for downstream signal transduction. Furthermore, we show that the positive allosteric modulator stabilizes both the active inter-domain 7TM interface and an open, extended intra-domain ICL2 conformation. This stabilization leads to the formation of a pseudo-cavity composed of the ICL2, ICL3, TM3, and C-terminus, which facilitates G protein coordination. Our strategy may be generalizable for characterizing millisecond events in other allosteric systems.


Assuntos
Multimerização Proteica , Receptor de Glutamato Metabotrópico 5 , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/química , Receptor de Glutamato Metabotrópico 5/genética , Regulação Alostérica , Humanos , Células HEK293 , Transdução de Sinais , Simulação de Dinâmica Molecular , Animais , Domínios Proteicos , Ligação Proteica
2.
Turk J Gastroenterol ; 35(3): 212-222, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39128062

RESUMO

BACKGROUND/AIMS:  At present, there are relatively few reports on the treatment consisting of transarterial chemoembolization (TACE) combined with lenvatinib, and there is no unified conclusion on the curative effect. The objective of this research was to assess the efficacy and safety of combining TACE with lenvatinib for the treatment of unresectable hepatocellular carcinoma (uHCC). MATERIALS AND METHODS:  This study was a retrospective analysis of the patient's medical records. In this study, 249 patients (uHCC) in our hospital from 2020 to 2021 were divided into 2 groups, including the TACE-alone group (198 patients received TACE alone) and the TACE-LEN group (51 patients were treated with TACE combined with lenvatinib). According to the propensity score matching method, there were TACE-LEN group (51 patients) and TACE-alone group (51 patients). With the help of surgical experts, the overall survival (OS), progression-free survival (PFS), and tumor response (according to mRECIST) of the 2 groups were sorted and recorded, and then analyzed. Survival curves were established, the prognostic factors of OS and PFS were analyzed by univariate and multivariate analyses, and the independent prognostic factors were recorded. The adverse reactions of patients after treatment were recorded. RESULTS:  The 1-year and 2-year OS rates were 50.98% and 19.48% for the TACE-LEN group, 27.45% and 8.55% for the TACE-alone group (P = .042), respectively. The PFS of patients in the TACE-LEN group was also longer (1-year PFS rate: 25.49% vs. 11.76%, 2-year PFS rate: 19.17% vs. 5.88%; P = .0069). The disease control rate (68.63% vs. 49.10%, P = .044) of the TACE-LEN group was significantly higher. In the subgroup analysis, the OS of the TACE-LEN group was better than TACE-alone group in patients with Barcelona Clinic Liver Cancer stage C (1-year OS rate: 44.44% vs. 17.14%, 2-year OS rate: 8.67% vs. 0%; P = .009). Factor analysis concluded that serum alkaline phosphatase and treatment protocol (TACE-LEN vs. TACE) were independent influencing factors of OS. The most common treatment-related AEs included decreased albumin (n = 28, 54.9%), hypertension (n = 23, 45.1%), elevated aspartate transaminase (n = 21, 41.2%) and elevated total bilirubin (n = 18, 35.2%) in TACE-LEN group. CONCLUSION:  Compared with TACE monotherapy, TACE combined with lenvatinib effectively prolonged the OS time with a controllable safety profile for patients with uHCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Quimioembolização Terapêutica/métodos , Estudos Retrospectivos , Feminino , Masculino , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/uso terapêutico , Pessoa de Meia-Idade , Quinolinas/administração & dosagem , Quinolinas/uso terapêutico , Idoso , Antineoplásicos/administração & dosagem , Resultado do Tratamento , Terapia Combinada , Pontuação de Propensão
3.
Cell Rep ; 43(9): 114686, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216002

RESUMO

Histone lysine lactylation (Kla) is a post-translational modification, and its role in tumor immune escape remains unclear. Here, we find that increased histone lactylation is associated with poor response to immunotherapy in head and neck squamous cell carcinoma (HNSCC). H3K9la is identified as a specific modification site in HNSCC. Using cleavage under targets and tagmentation analyses, interleukin-11 (IL-11) is identified as a downstream regulatory gene of H3K9la. IL-11 transcriptionally activates immune checkpoint genes through JAK2/STAT3 signaling in CD8+ T cells. Additionally, IL-11 overexpression promotes tumor progression and CD8+ T cell dysfunction in vivo. Moreover, IL11 knockdown reverses lactate-induced CD8+ T cell exhaustion, and cholesterol-modified siIL11 restores CD8+ T cell killing activity and enhances immunotherapy efficacy. Clinically, H3K9la positively correlates with IL-11 expression and unfavorable immunotherapy responses in patients. This study reveals the crucial role of histone lactylation in immune escape, providing insights into immunotherapy strategies for HNSCC.

4.
Ann Vasc Surg ; 108: 419-425, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39025210

RESUMO

BACKGROUND: Kasabach-Merritt phenomenon (KMP) is characterized by profound thrombocytopenia and consumptive coagulopathy associated with vascular tumors, such as Kaposiform hemangioendothelioma (KHE). The pathogenesis of KMP remains unclear and its treatment is challenging. In this study, we tried to establish an animal model of KMP, which may facilitate the research on the etiology and new treatment. METHODS: A fresh sample of KHE from a one-month-old female infant with KMP was scissored into pieces and transplanted subcutaneously into the back of the nude mice. Blood routine examination was performed before the transplantation and 2, 4, 8, 12, and 16 weeks after the transplantation. Transplanted tumors were harvested 2, 4, 8, 12, and 16 weeks after the transplantation. H-E staining, immunohistochemistry staining of cluster of differentiation 31 (CD31) and alpha-smooth muscle actin (α-SMA), and ultrastructural observation were performed on the plugs. RESULTS: Blood test showed a significant decrease in the number of platelets 2 weeks after transplantation. The number of platelets showed an overall trend of recovery from 2 weeks despite a slight decrease at 12 weeks after transplantation. There was no significant difference in the platelet count at 16 weeks after transplantation compared with the original state. H-E staining showed abundant irregular blood sinuses in the transplanted tumors with plenty of blood cells 2 weeks after the transplantation. 4, 8, and 12 weeks after transplantation, the density of blood sinuses decreased progressively. 16 weeks after transplantation, the plugs involuted into fibrous tissue. Immunohistochemistry staining showed the positive expression of CD31 in the endothelial cells and α-SMA in the perivascular cells. Ultrastructural observation also showed the features of KHE and progressive evolution of the tumors. CONCLUSIONS: We successfully established an experimental model of KMP by the xenograft of KHE in nude mice, which manifested profound thrombocytopenia and typical pathological structure.


Assuntos
Actinas , Modelos Animais de Doenças , Hemangioendotelioma , Síndrome de Kasabach-Merritt , Camundongos Nus , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Sarcoma de Kaposi , Animais , Síndrome de Kasabach-Merritt/patologia , Hemangioendotelioma/patologia , Feminino , Sarcoma de Kaposi/patologia , Fatores de Tempo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Actinas/metabolismo , Humanos , Contagem de Plaquetas , Xenoenxertos , Camundongos Endogâmicos BALB C
5.
J Biol Chem ; 300(8): 107499, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944125

RESUMO

Blood amino acid levels are maintained in a narrow physiological range. The pancreatic α cells have emerged as the primary aminoacidemia regulator through glucagon secretion to promote hepatic amino acid catabolism. Interruption of glucagon signaling disrupts the liver-α cells axis leading to hyperaminoacidemia, which triggers a compensatory rise in glucagon secretion and α cell hyperplasia. The mechanisms of hyperaminoacidemia-induced α cell hyperplasia remain incompletely understood. Using a mouse α cell line and in vivo studies in zebrafish and mice, we found that hyperaminoacidemia-induced α cell hyperplasia requires ErbB3 signaling. In addition to mechanistic target of rapamycin complex 1, another ErbB3 downstream effector signal transducer and activator of transcription 3 also plays a role in α cell hyperplasia. Mechanistically, ErbB3 may partner with ErbB2 to stimulate cyclin D2 and suppress p27 via mechanistic target of rapamycin complex 1 and signal transducer and activator of transcription 3. Our study identifies ErbB3 as a new regulator for hyperaminoacidemia-induced α cell proliferation and a critical component of the liver-α cells axis that regulates aminoacidemia.


Assuntos
Ciclina D2 , Células Secretoras de Glucagon , Hiperplasia , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptor ErbB-3 , Peixe-Zebra , Animais , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/patologia , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Hiperplasia/metabolismo , Hiperplasia/patologia , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ciclina D2/metabolismo , Ciclina D2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais , Proliferação de Células , Aminoácidos/metabolismo , Linhagem Celular , Humanos
6.
Cell Signal ; 121: 111237, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38810861

RESUMO

BACKGROUND: The study aimed to investigate the role of copper death-related genes (CRGs) in bladder cancer (BC) for improved prognosis assessment. METHODS: Multi-omics techniques were utilized to analyze CRG expression in BC tissues from TCGA and GEO databases. Consensus clustering categorized patients into molecular subtypes based on clinical characteristics and immune cell infiltration. RESULTS: An innovative risk assessment model identified eight critical genes associated with BC risk. In vitro and in vivo experiments validated LIPT1's significant impact on copper-induced cell death, proliferation, migration, and invasion in BC. CONCLUSION: This multi-omics analysis elucidates the pivotal role of CRGs in BC progression, suggesting enhanced risk assessment through molecular subtype categorization and identification of key genes like LIPT1. Insights into these mechanisms offer the potential for improved diagnosis and treatment strategies for BC patients.


Assuntos
Cobre , Perfilação da Expressão Gênica , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Humanos , Regulação Neoplásica da Expressão Gênica , Medição de Risco , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Feminino , Masculino , Transcriptoma , Camundongos
7.
Cancer Commun (Lond) ; 44(6): 670-694, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734931

RESUMO

BACKGROUND: Metabolic reprograming and immune escape are two hallmarks of cancer. However, how metabolic disorders drive immune escape in head and neck squamous cell carcinoma (HNSCC) remains unclear. Therefore, the aim of the present study was to investigate the metabolic landscape of HNSCC and its mechanism of driving immune escape. METHODS: Analysis of paired tumor tissues and adjacent normal tissues from 69 HNSCC patients was performed using liquid/gas chromatography-mass spectrometry and RNA-sequencing. The tumor-promoting function of kynurenine (Kyn) was explored in vitro and in vivo. The downstream target of Kyn was investigated in CD8+ T cells. The regulation of CD8+ T cells was investigated after Siglec-15 overexpression in vivo. An engineering nanoparticle was established to deliver Siglec-15 small interfering RNA (siS15), and its association with immunotherapy response were investigated. The association between Siglec-15 and CD8+ programmed cell death 1 (PD-1)+ T cells was analyzed in a HNSCC patient cohort. RESULTS: A total of 178 metabolites showed significant dysregulation in HNSCC, including carbohydrates, lipids and lipid-like molecules, and amino acids. Among these, amino acid metabolism was the most significantly altered, especially Kyn, which promoted tumor proliferation and metastasis. In addition, most immune checkpoint molecules were upregulated in Kyn-high patients based on RNA-sequencing. Furthermore, tumor-derived Kyn was transferred into CD8+ T cells and induced T cell functional exhaustion, and blocking Kyn transporters restored its killing activity. Accroding to the results, mechanistically, Kyn transcriptionally regulated the expression of Siglec-15 via aryl hydrocarbon receptor (AhR), and overexpression of Siglec-15 promoted immune escape by suppressing T cell infiltration and activation. Targeting AhR in vivo reduced Kyn-mediated Siglec-15 expression and promoted intratumoral CD8+ T cell infiltration and killing capacity. Finally, a NH2-modified mesoporous silica nanoparticle was designed to deliver siS15, which restored CD8+ T cell function status and enhanced anti-PD-1 efficacy in tumor-bearing immunocompetent mice. Clinically, Siglec-15 was positively correlated with AhR expression and CD8+PD-1+ T cell infiltration in HNSCC tissues. CONCLUSIONS: The findings describe the metabolic landscape of HNSCC comprehensively and reveal that the Kyn/Siglec-15 axis may be a novel potential immunometabolism mechanism, providing a promising therapeutic strategy for cancers.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço , Cinurenina , Carcinoma de Células Escamosas de Cabeça e Pescoço , Evasão Tumoral , Humanos , Cinurenina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Animais , Camundongos , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Linhagem Celular Tumoral
8.
Adv Healthc Mater ; : e2400888, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626918

RESUMO

Innovative silica nanomaterials have made the significant advancements in curative therapy against cancers with multidrug resistance (MDR). The study on different-nanostructured mesoporous silica nanoparticles (MSNs) with discrepant pore sizes affecting biomacromolecules in resisting cancer MDR hasn't been reported yet. In this study, a systematic comparison of 6 nm-pore sized hollow-structured MSNs (HMSNs) and 10 nm-pore sized dendrimers-structured MSNs (LMSNs) for delivering Bcl-2-functional converting peptide (N9) or doxorubicin (DOX) to overcome cancer MDR is comprehensively carried out both in in vitro and in vivo resistant tumor models. The results show that both LMSNs and HMSNs exert no significant difference in delivering DOX to treat drug-resistant cancers. However, compared with N9@HMSNs, N9@LMSNs display the increased loading efficiency, the improved cell-penetrative capability, the higher cancer cell apoptosis effect, the enhanced tumor accumulation and retention efficiency, and the final elevated tumor inhibition efficiency. Unexpectedly, naked LMSNs without surface modification especially at high dosage produce relatively more serious toxicity than HMSNs whatever in cells, zebrafish embryo or mice models. Collectively, the data provide the sufficient theoretical evidence that LMSNs might be a better choice for delivering biomacromolecules to treat resistant cancers after appropriate surface functionalization such as with PEGylation to weaken its intrinsic toxicity.

9.
Cancer Lett ; 588: 216756, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423248

RESUMO

The Yes-associated protein (YAP) plays a vital role in tumor progression and metabolic regulation. However, the involvement of YAP in metabolic reprogramming of head and neck squamous cell carcinoma remains unclear. Using RNA sequencing and ultra-high-performance liquid chromatography-tandem mass spectrometry, we observed that YAP increased the levels of the main metabolites and enzymes involved in methionine metabolism. APIP, an enzyme involved in the methionine salvage pathway, was transcriptionally activated by YAP. Further experiments showed that APIP promotes HNSCC cells migration and invasion in vitro and tumor metastasis in adjacent lymph nodes and distant organs in vivo. APIP also increases the levels of metabolites in the methionine cycle. We further found that methionine reversed the inhibition of HNSCC migration and invasion by APIP knockdown. In vivo experiments demonstrated that methionine addition promoted tumor metastasis. Mechanistically, the methionine cycle phosphorylated and inactivated GSK3ß, then induced the epithelial mesenchymal transition pathway. Increased APIP expression was detected in patients with HNSCC, especially in tumors with lymph node metastasis. Metabolites of methionine cycle were also elevated in HNSCC patients. Our findings revealed that APIP, a novel target of YAP, promotes the methionine cycle and HNSCC metastasis through GSK3ß phosphorylation.


Assuntos
Neoplasias de Cabeça e Pescoço , Metionina , Humanos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Racemetionina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-38218532

RESUMO

BACKGROUND: The mortality of acute type A aortic dissection (ATAAD) with malperfusion syndrome (MPS) is high. However, the management strategy remains controversial. We aimed to evaluate the strategy for MPS at our institution. METHODS: Among 724 patients with ATAAD, 167 patients with MPS were treated with immediate central repair (first stage) or an optimized strategy (second stage). In the second stage, the optimized strategy used was based on 6-hour threshold from symptom onset. For MPS with symptom onset within 6 hours, immediate central repair was performed, followed by endovascular reperfusion if malperfusion persisted. With symptom onset beyond 6 hours, individualized delayed central repair was performed. We compared outcomes between the first and second stages. RESULTS: The in-hospital mortality of ATAAD was significantly decreased when the optimized strategy was used (4.3% in the second stage vs 12.5% in the first stage; P < .01). In the second stage, the in-hospital mortality for MPS was decreased (10.2% vs 33.9%; P < .01). Moreover, the in-hospital mortality for MPS with symptom onset within 6 hours and beyond 6 hours decreased from 24% to 7.5% and from 41.2% to 11.8%, respectively. The operative mortality of MPS in the second stage was comparable to that in patients without MPS (4.0% vs 2.4%; P > .05). CONCLUSIONS: The optimized strategy significantly improved the outcomes of MPS. The 6-hour threshold from symptom onset could be very useful in determining the timing of central repair. For patients with MPS symptom onset within 6 hours, immediate central repair is reasonable; for those with symptom onset beyond 6 hours, individualized delayed central repair should be considered.

11.
BMC Plant Biol ; 23(1): 556, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950159

RESUMO

BACKGROUND: As one of the major food crops in the world, rice is vulnerable to cadmium (Cd) pollution. Understanding of the molecular mechanisms of Cd uptake, transport and detoxification in rice is essential for the breeding of low-Cd rice. However, the molecular mechanisms underlying the response of rice to Cd stress remains to be further clarified. RESULTS: In this study, a novel Cd-responsive gene OsHARBI1-1 was identified in the rice genome and its expression pattern and function were characterized. Bioinformatics analysis showed that the promoter region of OsHARBI1-1 had multiple cis-acting elements in response to phytohormones and stress, and the expression of OsHARBI1-1 was induced by phytohormones. OsHARBI1-1 protein was targeted to the nucleus. qRT-PCR analysis results showed that the expression of OsHARBI1-1 in the roots was repressed while the expression in the shoots was increased under Cd stress. Heterologous expression of OsHARBI1-1 in yeast conferred tolerance to Cd and reduced Cd content in the cells. Meanwhile, the expression of OsHARBI1-1 in Arabidopsis thaliana (A. thaliana) enhanced the tolerance of A. thaliana to Cd stress. In addition, compared with the wild type plants, the POD activity of transgenic plants was increased, while the SOD and CAT activities were decreased. Interestingly, the accumulation of Cd in the roots of A. thaliana expressing OsHARBI1-1 was significantly increased, whereas the Cd accumulation in the shoots was slightly decreased. Compared to the WT plants, the expression of genes related to Cd absorption and chelation was upregulated in transgenic A. thaliana under Cd stress, while the expression of genes responsible for the translocation of Cd from the roots to the shoots was downregulated. Moreover, the expression of phytohormone-related genes was significantly influenced by the expression of OsHARBI1-1 with and without Cd treatment. CONCLUSIONS: Findings of this study suggest that OsHARBI1-1 might play a role in the response of plants to Cd response by affecting antioxidant enzyme activities, Cd chelation, absorption and transport, and phytohormone homeostasis and signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cádmio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Melhoramento Vegetal , Proteínas de Arabidopsis/genética , Antioxidantes/metabolismo , Raízes de Plantas/metabolismo
12.
Biomater Res ; 27(1): 110, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925456

RESUMO

BACKGROUND: Transarterial radioembolization (TARE) with 90Y-labeled glass and resin microspheres is one of the primary treatment strategies for advanced-stage primary and metastatic hepatocellular carcinoma (HCC). However, difficulties of real-time monitoring post administration and embolic hypoxia influence treatment prognosis. In this study, we developed a new biodegradable polymer microsphere that can simultaneously load 177Lu and MgO nanoparticle, and evaluated the TARE therapeutic efficacy and biosafety of 177Lu-PDA-CS-MgO microspheres for HCC treatment. METHODS: Chitosan microspheres were synthesized through emulsification crosslink reaction and then conducted surface modification with polydopamine (PDA). The 177Lu and nano MgO were conjugated to microspheres using active chemical groups of PDA. The characteristics of radionuclide loading efficiency, biodegradability, blood compatibility, and anti-tumor effectwere evaluated both in vitro and in vivo. SPECT/CT imaging was performed to monitor bio-distribution and bio-stability of 177Lu-PDA-CS-MgO after TARE treatment. The survival duration of each rat was monitored. HE analysis, TUNEL analysis, immunohistochemical analysis, and western blot analysis were conducted to explore the anti-tumor effect and mechanism of composited microspheres. Body weight, liver function, blood routine examination were monitored at different time points to evaluate the bio-safety of microspheres. RESULTS: The composite 177Lu-PDA-CS-MgO microsphere indicated satisfactory degradability, biocompatibility, radionuclide loading efficiency and radiochemical stability in vitro. Cellular evaluation showed that 177Lu-PDA-CS-MgO had significant anti-tumor effect and blocked tumor cell cycles in S phase. Surgical TARE treatment with 177Lu-PDA-CS-MgO significantly prolonged the medial survival time from 49 d to 105 d, and effectively inhibited primary tumor growth and small metastases spreading. Moreover, these microspheres indicated ideal in vivo stability and allowed real-time SPECT/CT monitoring for up to 8 weeks. Immunostaining and immunoblotting results also confirmed that 177Lu-PDA-CS-MgO had potential in suppressing tumor invasion and angiogenesis, and improved embolic hypoxia in HCC tissues. Further evaluations of body weight, blood test, and pathological analysis indicated good biosafety of 177Lu-PDA-CS-MgO microspheres in vivo. CONCLUSION: Our study demonstrated that 177Lu-PDA-CS-MgO microsphere hold great potential as interventional brachytherapy candidate for HCC therapy. Polymer composite microspheres loading 177Lu radionuclide and MgO nanoparticles for interventional radioembolization therapy and real-time SPECT imaging of hepatic cancer.

13.
Nanomaterials (Basel) ; 13(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37836364

RESUMO

Perovskite quantum dots (QDs), emerging with excellent bright-green photoluminescence (PL) and a large absorption coefficient, are of great potential for the fabrication of light sources in underwater optical wireless communication systems. However, the instability caused by low formation energy and abundant surface traps is still a major concern for perovskite-based light sources in underwater conditions. Herein, we propose ultra-stable zero dimensional-two dimensional (0D-2D) CsPbBr3 QD/1,4-bis(4-methylstyryl)benzene (p-MSB) nanoplate (NP) heterostructures synthesized via a facile approach at room temperature in air. CsPbBr3 QDs can naturally nucleate on the p-MSB NP toluene solution, and the radiative combination is drastically intensified owing to the electron transfer within the typical type-II heterostructures, leading to a sharply increased PLQY of the heterostructure thin films up to 200% compared with the pristine sample. The passivation of defects within CsPbBr3 QDs can be effectively realized with the existence of p-MSB NPs, and thus the obviously improved PL is steadily witnessed in an ambient atmosphere and thermal environment. Meanwhile, the enhanced humidity stability and a peak EQE of 9.67% suggests a synergetic strategy for concurrently addressing the knotty problems on unsatisfied luminous efficiency and stability of perovskites for high-performance green-emitting optoelectronic devices in underwater applications.

14.
Br J Cancer ; 129(12): 1915-1929, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37884683

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a highly lethal malignancy with few therapeutic options. Cyclin­dependent kinase 9 (CDK9), a potential therapeutic target of many cancers, has been recently observed to be upregulated in ccRCC patients. Therefore, we aimed to investigate the therapeutic potential of CDK9 in ccRCC and develop a novel CDK9 inhibitor with low toxicity for ccRCC treatment. METHODS: The expression of CDK9 in ccRCC was checked using the online database and tissue microarray analysis. shRNA-mediated CDK9 knockdown and CDK inhibitor were applied to evaluate the effect of CDK9 on ccRCC. Medicinal chemistry methods were used to develop a new CDK9 inhibitor with drugability. RNA-seq and ChIP-seq experiments were conducted to explore the mechanism of action. MTS, western blotting, and colony formation assays were performed to evaluate the anti-ccRCC effects of CDK9 knockdown and inhibition in vitro. The in vivo anti-tumour efficacy was evaluated in a xenograft model. RESULTS: CDK9 is overexpressed and associated with poor survival in ccRCC. Knockdown or inhibition of CDK9 significantly suppressed ccRCC cells. XPW1 was identified as a new potent and selective CDK9 inhibitor with excellent anti-ccRCC activity and low toxicity. In mechanism, XPW1 transcriptionally inhibited DNA repair programmes in ccRCC cells, resulting in an excellent anti-tumour effect. CDK9 and BRD4 were two highly correlated transcriptional regulators in ccRCC patients, and the BRD4 inhibitor JQ1 enhanced XPW1's anti-ccRCC effects in vitro and in vivo. CONCLUSIONS: This work provides valuable insights into the therapeutic potential of CDK9 in ccRCC. The CDK9 inhibitor XPW1 would be a novel therapeutic agent for targeting ccRCC, alone or in rational combinations.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Proteínas que Contêm Bromodomínio/antagonistas & inibidores , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proteínas Nucleares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Pharmaceutics ; 15(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514186

RESUMO

Small-molecule modulators of neurotensin receptor 1 (NTSR1), a class A G-protein-coupled receptor (GPCR), has emerged as promising therapeutic agent for psychiatric disorders and cancer. Interestingly, a chemical group substitution in NTSR1 modulators can launch different types of downstream regulation, highlighting the significance of deciphering the internal fine-tuning mechanism. Here, we conducted a synergistic application of a Gaussian accelerated molecular dynamics simulation, a conventional molecular dynamics simulation, and Markov state models (MSM) to investigate the underlying mechanism of 'driver chemical groups' of modulators triggering inverse signaling. The results indicated that the flexibility of the leucine moiety in NTSR1 agonists contributes to the inward displacement of TM7 through a loosely coupled allosteric pathway, while the rigidity of the adamantane moiety in NTSR1 antagonists leads to unfavorable downward transduction of agonistic signaling. Furthermore, we found that R3226.54, Y3196.51, F3537.42, R1483.32, S3567.45, and S3577.46 may play a key role in inducing the activation of NTSR1. Together, our findings not only highlight the ingenious signal transduction within class A GPCRs but also lay a foundation for the development of targeted drugs harboring different regulatory functions of NTSR1.

16.
Int J Biol Macromol ; 245: 125607, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390996

RESUMO

Heavy metal-associated isoprenylated plant proteins (HIPPs) play vital roles in regulating heavy metal responding activities in plants. Yet only a handful of studies have characterized the functions of HIPPs. In this study, a novel HIPP member OsHIPP17 was functionally characterized, which was involved in the tolerance of yeast and plants to cadmium (Cd). The Cd accumulation in yeast cells was increased due to the overexpression of OsHIPP17. Nevertheless, the overexpression of OsHIPP17 in Arabidopsis thaliana resulted in compromised growth under Cd stress. Meanwhile, the mutation of OsHIPP17 resulted in 38.9-40.9 % increase of Cd concentration in rice roots as well as 14.3-20.0 % decrease of Cd translocation factor. Further investigation of the genes responsible for Cd absorption and transporter indicated that the expression levels of these genes were also perturbed. In addition, two OsHIPP17-interacting proteins, OsHIPP24 and OsLOL3 were identified in a yeast two hybrid assay. Further analysis of their functions revealed that OsHIPP24 or OsLOL3 may be involved in the regulation of Cd tolerance by OsHIPP17 in rice. All above results implied that OsHIPP17 may affect Cd resistance by regulating the absorption and translocation of Cd in rice.

17.
FEBS Lett ; 597(14): 1868-1879, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37259581

RESUMO

Using a zebrafish ionocyte model, transcriptomics and genetic analyses were performed to identify pathways and genes involved in cell quiescence-proliferation regulation. Gene ontology and Kyoto encyclopedia of genes and genomes pathway analyses revealed that genes involved in transcription regulation, cell cycle, Foxo signalling and Wnt signalling pathway are enriched among the up-regulated genes while those involved in ion transport, cell adhesion and oxidation-reduction are enriched among the down-regulated genes. Among the top up-regulated genes is FK506-binding protein 5 (Fkbp5). Genetic deletion and pharmacological inhibition of Fkbp5 abolished ionocyte reactivation and impaired Akt signalling. Forced expression of a constitutively active form of Akt rescued the defects caused by Fkbp5 inhibition. These results uncover a key role of Fbkp5 in regulating the quiescence-proliferation decision via Akt signalling.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células , Epitélio/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
18.
Int J Biol Macromol ; 242(Pt 1): 124732, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148940

RESUMO

At present, food waste has become a serious issue and the use of petroleum-based food packaging films has resulted in a series of potential hazards. Therefore, more attention has been focused on the development of new food packaging materials. The polysaccharide-based composite film loaded with active substances considered to be an excellent preservative material. A novel packaging film based on sodium alginate and konjac glucomannan (SA-KGM) blended with tea polyphenols (TP) was prepared in the present study. The excellent microstructure of films was shown by atomic force microscopy (AFM). It was indicated by FTIR spectra that the components could interact with each other through hydrogen bonds, which was also confirmed by molecular docking simulation. Meanwhile, the mechanical properties, barrier property, oxidation property, antibacterial activity, and stability of the structure of the TP-SA-KGM film were significantly improved. The AFM images and results of molecular docking simulation indicated that TP could affect the cell wall of bacteria by acting with peptidoglycan. Finally, the film showed excellent preservation effects in both beef and apples, which suggested that TP-SA-KGM film could be a novel bioactive packaging material with wide application potential in food preservation.


Assuntos
Alginatos , Filmes Comestíveis , Conservação de Alimentos , Mananas , Polifenóis , Alginatos/química , Alginatos/farmacologia , Mananas/química , Mananas/farmacologia , Conservação de Alimentos/métodos , Camellia sinensis , Microscopia de Força Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Polifenóis/química , Polifenóis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Simulação de Acoplamento Molecular
19.
Nucleic Acids Res ; 51(W1): W129-W133, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37078611

RESUMO

Driver mutations can contribute to the initial processes of cancer, and their identification is crucial for understanding tumorigenesis as well as for molecular drug discovery and development. Allostery regulates protein function away from the functional regions at an allosteric site. In addition to the known effects of mutations around functional sites, mutations at allosteric sites have been associated with protein structure, dynamics, and energy communication. As a result, identifying driver mutations at allosteric sites will be beneficial for deciphering the mechanisms of cancer and developing allosteric drugs. In this study, we provided a platform called DeepAlloDriver to predict driver mutations using a deep learning method that exhibited >93% accuracy and precision. Using this server, we found that a missense mutation in RRAS2 (Gln72 to Leu) might serve as an allosteric driver of tumorigenesis, revealing the mechanism of the mutation in knock-in mice and cancer patients. Overall, DeepAlloDriver would facilitate the elucidation of the mechanisms underlying cancer progression and help prioritize cancer therapeutic targets. The web server is freely available at: https://mdl.shsmu.edu.cn/DeepAlloDriver.


Assuntos
Aprendizado Profundo , Neoplasias , Animais , Camundongos , Regulação Alostérica/genética , Sítio Alostérico , Neoplasias/genética , Proteínas/química , Carcinogênese/genética , Mutação
20.
Clin Cancer Res ; 29(13): 2385-2393, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37074726

RESUMO

PURPOSE: This global phase I trial investigated the safety, efficacy, pharmacokinetics, and pharmacodynamics of lisaftoclax (APG-2575), a novel, orally active, potent selective B-cell lymphoma 2 (BCL-2) inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or small lymphocytic lymphoma (R/R CLL/SLL) and other hematologic malignancies (HMs). PATIENTS AND METHODS: Maximum tolerated dose (MTD) and recommended phase II dose were evaluated. Outcome measures were safety and tolerability (primary) and pharmacokinetic variables and antitumor effects (secondary). Pharmacodynamics in patient tumor cells were explored. RESULTS: Among 52 patients receiving lisaftoclax, MTD was not reached. Treatment-emergent adverse events (TEAEs) included diarrhea (48.1%), fatigue (34.6%), nausea (30.8%), anemia and thrombocytopenia (28.8% each), neutropenia (26.9%), constipation (25.0%), vomiting (23.1%), headache (21.2%), peripheral edema and hypokalemia (17.3% each), and arthralgia (15.4%). Grade ≥ 3 hematologic TEAEs included neutropenia (21.2%), thrombocytopenia (13.5%), and anemia (9.6%), none resulting in treatment discontinuation. Clinical pharmacokinetic and pharmacodynamic results demonstrated that lisaftoclax had a limited plasma residence and systemic exposure and elicited rapid clearance of malignant cells. With a median treatment of 15 (range, 6-43) cycles, 14 of 22 efficacy-evaluable patients with R/R CLL/SLL experienced partial responses, for an objective response rate of 63.6% and median time to response of 2 (range, 2-8) cycles. CONCLUSIONS: Lisaftoclax was well tolerated, with no evidence of tumor lysis syndrome. Dose-limiting toxicity was not reached at the highest dose level. Lisaftoclax has a unique pharmacokinetic profile compatible with a potentially more convenient daily (vs. weekly) dose ramp-up schedule and induced rapid clinical responses in patients with CLL/SLL, warranting continued clinical investigation.


Assuntos
Anemia , Antineoplásicos , Neoplasias Hematológicas , Leucemia Linfocítica Crônica de Células B , Linfoma de Células B , Neutropenia , Trombocitopenia , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Antineoplásicos/efeitos adversos , Linfoma de Células B/patologia , Neoplasias Hematológicas/tratamento farmacológico , Neutropenia/induzido quimicamente , Anemia/induzido quimicamente , Anemia/tratamento farmacológico , Trombocitopenia/induzido quimicamente , Proteínas Proto-Oncogênicas c-bcl-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA