Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 18: 7483-7503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090366

RESUMO

Purpose: Fatty oil of Descurainia Sophia (OIL) has poor stability and low solubility, which limits its pharmacological effects. We hypothesized that fatty oil nanoparticles (OIL-NPs) could overcome this limitation. The protective effect of OIL-NPs against monocrotaline-induced lung injury in rats was studied. Methods: We prepared OIL-NPs by wrapping fatty oil with polylactic-polyglycolide nanoparticles (PLGA-NPs) and conducted in vivo and in vitro experiments to explore its anti-pulmonary hypertension (PH) effect. In vitro, we induced malignant proliferation of pulmonary artery smooth muscle cells (RPASMC) using anoxic chambers, and studied the effects of OIL-NPs on the malignant proliferation of RPASMC cells and phospholipase C (PLC)/inositol triphosphate receptor (IP3R)/Ca2+ signal pathways. In vivo, we used small animal echocardiography, flow cytometry, immunohistochemistry, western blotting (WB), polymerase chain reaction (PCR) and metabolomics to explore the effects of OIL-NPs on the heart and lung pathological damage and PLC/IP3R/Ca2+ signal pathway of pulmonary hypertension rats. Results: We prepared fatty into OIL-NPs. In vitro, OIL-NPs could improve the mitochondrial function and inhibit the malignant proliferation of RPASMC cells by inhibiting the PLC/IP3R/Ca2+signal pathway. In vivo, OIL-NPs could reduce the pulmonary artery pressure of rats and alleviate the pathological injury and inflammatory reaction of heart and lung by inhibiting the PLC/IP3R/Ca2+ signal pathway. Conclusion: OIL-NPs have anti-pulmonary hypertension effect, and the mechanism may be related to the inhibition of PLC/IP3R/Ca2+signal pathway.


Assuntos
Hipertensão Pulmonar , Nanopartículas , Ratos , Animais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Ratos Sprague-Dawley , Monocrotalina/efeitos adversos , Fosfolipases Tipo C/efeitos adversos , Fosfolipases Tipo C/metabolismo , Artéria Pulmonar , Transdução de Sinais
2.
Biomed Pharmacother ; 150: 113061, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658231

RESUMO

OBJECTIVE: We investigated the protective effects of ephedra herb (HEPH) on adriamycin-induced testicular toxicity in rats and explored the potential mechanisms underlying these effects. METHODS: A rat model of adriamycin injury was established, and sperm motility-related indicator and oxidative stress levels in the testis were evaluated. Serum levels of sex hormones and levels of testicular cell apoptosis were detected by enzyme-linked immunosorbent assay and flow cytometry, respectively. Western blotting (WB), immunofluorescence analyses, and reverse transcription-polymerase chain reaction (RT-PCR) were performed to evaluate the gonadotropin-releasing hormone (GnRH) signalling pathway- and meiosis-related genes and proteins. In subsequent in vitro experiments, adriamycin was used to stimulate GC-1 cells, which were treated with HEPH, ephedrine, or pseudoephedrine. Cell viability was assessed using flow cytometry to detect apoptosis and reactive oxygen species, whereas the GnRH signalling pathway and levels of meiosis-related genes and proteins were evaluated by InCell WB, a high-content imaging system, and RT-PCR. RESULTS: Per in vivo experiments, HEPH restored testicular weight and function, sperm characteristics, serum and tissue hormonal levels, and antioxidant defences and significantly activated the GnRH signalling pathway- and meiosis-related protein levels. All protective effects of HEPH against adriamycin-induced injury were antagonised by the GnRH antagonist cetrorelix. In vitro, HEPH, ephedrine, and pseudoephedrine significantly reduced adriamycin-induced GC-1 cell apoptosis and reactive oxygen species levels and increased the expression of GnRH signalling pathway- and meiosis-related proteins. The effect of pseudoephedrine was greater than that of ephedrine, and these findings may be an important basis for understanding the effects of HEPH.


Assuntos
Ephedra , Testículo , Animais , Doxorrubicina/farmacologia , Efedrina/metabolismo , Efedrina/farmacologia , Hormônio Liberador de Gonadotropina/farmacologia , Masculino , Pseudoefedrina/metabolismo , Pseudoefedrina/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Motilidade dos Espermatozoides
3.
Int J Nanomedicine ; 17: 1549-1566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401001

RESUMO

Purpose: Pseudoephedrine (PSE) has rapid absorption and metabolism, which limits its pharmacologic actions. We postulated that pseudoephedrine nanoparticles (PSE-NPs) with high bioavailability could overcome this limitation. The defensive function of PSE-NPs nanoparticles against adriamycin-induced reproductive toxicity in mice was studied. Methods: We encapsulated PSE in polylactide-polyglycolide nanoparticles (PLGA-NPs) and verified their protective activity against testicular injury in vivo and in vitro. Results: We report a promising delivery system that loads PSE into PLGA-NPs and finally assembles it into a nanocomposite particle. In vitro, PSE-NPs reduced the adriamycin-induced apoptosis of GC-1 cells significantly, improved mitochondrial energy metabolism and promoted expression of the proteins related to the gonadotropin-releasing hormone (GnRh) receptor signaling pathway. In vivo, evaluation of sperm indices and histology showed that adriamycin could induce testicular toxicity. PSE-NPs significantly increased the sperm motility of mice, reduced the percent apoptosis and oxidative stress of testes, increased serum levels of GnRh, activated the GnRhR signaling pathway in testes and promoted expression of meiosis-related factors. Conclusion: In view of their safety and efficiency, these PSE-NPs have potential applications in alleviating adriamycin-induced reproductive toxicity.


Assuntos
Nanopartículas , Pseudoefedrina , Animais , Doxorrubicina/toxicidade , Hormônio Liberador de Gonadotropina , Masculino , Camundongos , Transdução de Sinais , Motilidade dos Espermatozoides
4.
Phytomedicine ; 100: 154065, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35358932

RESUMO

BACKGROUND: Doxorubicin (DOX) is a highly effective chemotherapeutic that is effective for various tumours. However, the clinical application of DOX has been limited by adverse reactions such as cardiotoxicity and heart failure. Since DOX-induced cardiotoxicity is irreversible, drugs to prevent DOX-induced cardiotoxicity are needed. PURPOSE: This study aimed to investigate the effect of total flavonoids of Selaginella tamariscina (P.Beauv.) Spring (TFST) on doxorubicin-induced cardiotoxicity. METHODS: The present study established DOX-induced cardiotoxicity models in C57BL/6 mice treated with DOX (cumulative dose: 20 mg/kg body weight) and H9c2 cells incubated with DOX (1 µM/l) to explore the intervention effect and potential mechanism of TFST. Echocardiography was performed to evaluate left ventricular functions. Heart tissue samples were collected for histological evaluation. Myocardial injury markers and oxidative stress markers were examined. Mitochondrial energy metabolism pathway associated proteins PPARα/PGC-1α/Sirt3 were detected. We also explored the effects of TFST on endoplasmic reticulum (ER) stress and apoptosis. To further investigate the protective mechanism of TFST, we used the specific small interfering RNA MFN2 (siMFN2) to explore the effect of MFN2 on TFST against DOX-induced cardiotoxicity in vitro. Flow cytometry detected reactive oxygen species, mitochondrial membrane potential and apoptosis. Cell mitochondrial stress was measured by Seahorse XF analyser. RESULTS: Both in vivo and in vitro studies verified that TFST observably alleviated DOX-induced mitochondrial dysfunction and ER stress. However, these effects were reversed after transfected siMFN2. CONCLUSION: Our results indicated that TFST ameliorates DOX-induced cardiotoxicity by alleviating mitochondrial dysfunction and ER stress by activating MFN2/PERK. MFN2/PERK pathway activation may be a novel mechanism to protect against DOX-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Selaginellaceae , Animais , Apoptose , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Doxorrubicina/farmacologia , Estresse do Retículo Endoplasmático , Flavonoides/farmacologia , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias , Miócitos Cardíacos , Estresse Oxidativo
5.
Molecules ; 26(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34684716

RESUMO

Lipid deposition in the kidney can cause serious damage to the kidney, and there is an obvious epithelial-mesenchymal transition (EMT) and fibrosis in the late stage. To investigate the interventional effects and mechanisms of phenolic compounds from Mori Cortex on the EMT and fibrosis induced by sodium oleate-induced lipid deposition in renal tubular epithelial cells (NRK-52e cells), and the role played by CD36 in the adjustment process, NRK-52e cells induced by 200 µmol/L sodium oleate were given 10 µmoL/L moracin-P-2″-O-ß-d-glucopyranoside (Y-1), moracin-P-3'-O-ß-d-glucopyranoside (Y-2), moracin-P-3'-O-α-l-arabinopyranoside (Y-3), and moracin-P-3'-O-[ß-glucopyranoside-(1→2)arabinopyranoside] (Y-4), and Oil Red O staining was used to detect lipid deposition. A Western blot was used to detect lipid deposition-related protein CD36, inflammation-related protein (p-NF-κB-P65, NF-κB-P65, IL-1ß), oxidative stress-related protein (NOX1, Nrf2, Keap1), EMT-related proteins (CD31, α-SMA), and fibrosis-related proteins (TGF-ß, ZEB1, Snail1). A qRT-PCR test detected inflammation, EMT, and fibrosis-related gene mRNA levels. The TNF-α levels were detected by ELISA, and the colorimetric method was used to detects SOD and MDA levels. The ROS was measured by flow cytometry. A high-content imaging analysis system was applied to observe EMT and fibrosis-related proteins. At the same time, the experiment silenced CD36 and compared the difference between before and after drug treatment, then used molecular docking technology to predict the potential binding site of the active compounds with CD36. The research results show that sodium oleate can induce lipid deposition, inflammation, oxidative stress, and fibrosis in NRK-52e cells. Y-1 and Y-2 could significantly ameliorate the damage caused by sodium oleate, and Y-2 had a better ameliorating effect, while there was no significant change in Y-3 or Y-4. The amelioration effect of Y-1 and Y-2 disappeared after silencing CD36. Molecular docking technology showed that the Y-1 and Y-2 had hydrogen bonds to CD36 and that, compared with Y-1, Y-2 requires less binding energy. In summary, moracin-P-2″-O-ß-d-glucopyranoside and moracin-P-3'-O-ß-d-glucopyranoside from Mori Cortex ameliorated lipid deposition, EMT, and fibrosis induced by sodium oleate in NRK-52e cells through CD36.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Morus/metabolismo , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , China , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Fibrose , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA