Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675723

RESUMO

Silibinin is a flavonoid compound extracted from the seeds of Silybum marianum (L.) Gaertn. It has the functions of liver protection, blood-lipid reduction and anti-tumor effects. However, the potential molecular mechanism of silibinin against tumors is still unknown. This study aimed to assess the anti-tumor effects of silibinin in adenoid cystic carcinoma (ACC2) cells and Balb/c nude mice, and explore its potential mechanism based on network pharmacology prediction and experimental verification. A total of 347 targets interacting with silibinin were collected, and 75 targets related to the tumor growth process for silibinin were filtrated. Based on the PPI analysis, CASP3, SRC, ESR1, JAK2, PRKACA, HSPA8 and CAT showed stronger interactions with other factors and may be the key targets of silibinin for treating tumors. The predicted target proteins according to network pharmacology were verified using Western blot analysis in ACC2 cells and Balb/c nude mice. In the pharmacological experiment, silibinin was revealed to significantly inhibit viability, proliferation, migration and induce the apoptosis of ACC2 cells in vitro, as well as inhibit the growth and development of tumor tissue in vivo. Western blot analysis showed that silibinin affected the expression of proteins associated with cell proliferation, migration and apoptosis, such as MMP3, JNK, PPARα and JAK. The possible molecular mechanism involved in cancer pathways, PI3K-Akt signaling pathway and viral carcinogenesis pathway via the inhibition of CASP3, MMP3, SRC, MAPK10 and CDK6 and the activation of PPARα and JAK. Overall, our results provided insight into the pharmacological mechanisms of silibinin in the treatment of tumors. These results offer a support for the anti-tumor uses of silibinin.


Assuntos
Apoptose , Proliferação de Células , Farmacologia em Rede , Silibina , Silibina/farmacologia , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos/farmacologia
2.
Planta Med ; 89(7): 764-772, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940929

RESUMO

Seven main ginsenosides, including ginsenoside Re, ginsenoside Rb1, pseudoginsenoside F11, ginsenoside Rb2, ginsenoside Rb3, ginsenoside Rd, and ginsenoside F2, were identified by LC-QTOF MS/MS from root, leaf and flower extracts of Panax quinquefolius. These extracts promoted intersegmental vessel growth in a zebrafish model, indicating their potential cardiovascular health benefits. Network pharmacology analysis was then conducted to reveal the potential mechanisms of ginsenoside activity in the treatment of coronary artery disease. GO and KEGG enrichment analyses elucidated that G protein-coupled receptors played a critical role in VEGF-mediated signal transduction and that the molecular pathways associated with ginsenoside activity are involved in neuroactive ligand-receptor interaction, cholesterol metabolism, the cGMP-PKG signaling pathway, etc. Moreover, VEGF, FGF2, and STAT3 were confirmed as the major targets inducing proliferation of endothelial cells and driving the pro-angiogenic process. Overall, ginsenosides could be potent nutraceutical agents that act to reduce the risks of cardiovascular disease. Our findings will provide a basis to utilize the whole P. quinquefolius plant in drugs and functional foods.


Assuntos
Doença da Artéria Coronariana , Ginsenosídeos , Panax , Animais , Ginsenosídeos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra , Extratos Vegetais/farmacologia
3.
Front Pharmacol ; 14: 1116081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817116

RESUMO

Uncontrolled angiogenesis is a common denominator underlying many deadly and debilitating diseases such as myocardial infarction, chronic wounds, cancer, and age-related macular degeneration. As the current range of FDA-approved angiogenesis-based medicines are far from meeting clinical demands, the vast reserve of natural products from traditional Chinese medicine (TCM) offers an alternative source for developing pro-angiogenic or anti-angiogenic modulators. Here, we investigated 100 traditional Chinese medicine-derived individual metabolites which had reported gene expression in MCF7 cell lines in the Gene Expression Omnibus (GSE85871). We extracted literature angiogenic activities for 51 individual metabolites, and subsequently analysed their predicted targets and differentially expressed genes to understand their mechanisms of action. The angiogenesis phenotype was used to generate decision trees for rationalising the poly-pharmacology of known angiogenesis modulators such as ferulic acid and curculigoside and validated by an in vitro endothelial tube formation assay and a zebrafish model of angiogenesis. Moreover, using an in silico model we prospectively examined the angiogenesis-modulating activities of the remaining 49 individual metabolites. In vitro, tetrahydropalmatine and 1 beta-hydroxyalantolactone stimulated, while cinobufotalin and isoalantolactone inhibited endothelial tube formation. In vivo, ginsenosides Rb3 and Rc, 1 beta-hydroxyalantolactone and surprisingly cinobufotalin, restored angiogenesis against PTK787-induced impairment in zebrafish. In the absence of PTK787, deoxycholic acid and ursodeoxycholic acid did not affect angiogenesis. Despite some limitations, these results suggest further refinements of in silico prediction combined with biological assessment will be a valuable platform for accelerating the research and development of natural products from traditional Chinese medicine and understanding their mechanisms of action, and also for other traditional medicines for the prevention and treatment of angiogenic diseases.

4.
Colloids Surf B Biointerfaces ; 224: 113215, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36841205

RESUMO

Camptothecin is a naturally occurred anticancer drug but exhibits limitations including poor aqueous solubility, low bioavailability, and high level of adverse drug reactions on normal organs. To overcome these problems, this paper developed a novel amphiphilic Lau-Leu-HES carrier using hydroxyethyl starch, lauric acid, and L-leucine as starting materials. The carrier was successfully applied to prepare Lau-Leu-HES nanoparticles loading camptothecin. The drug loading efficiency and encapsulation efficiency of the nanoparticles were calculated to be 29.04% and 81.85%, respectively. The nanoparticles exhibited high zeta potential (-15.51 mV) and small hydrodynamic diameter (105.4 nm). Camptothecin in nanoparticles could be rapidly released under acidic condition (pH = 4.5), thereby indicating the high sensitivity under cancer microenvironments. Anticancer investigation revealed that the nanoparticles could inhibit the proliferation of HepG2 cells in vitro. Compared with commercial available drug doxorubicin, the nanoparticles could significantly inhibit the expression of krasv12 oncogene in transgenic Tg (EGFP-krasV12) zebrafish. These results indicate that the camptothecin-loaded Lau-Leu-HES nanoparticles are expected to be a potential candidate for cancer therapy.


Assuntos
Camptotecina , Nanopartículas , Animais , Humanos , Camptotecina/farmacologia , Portadores de Fármacos , Peixe-Zebra , Proteínas Proto-Oncogênicas p21(ras) , Células Hep G2 , Amido , Sistemas de Liberação de Medicamentos/métodos
5.
Molecules ; 26(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833921

RESUMO

Panax quinquefolius, a popular medicinal herb, has been cultivated in China for many years. In this work, the region-specific profiles of metabolites in P. quinquefolius from Wendeng was investigated using liquid-chromatography-quadrupole-time-of-flight-(LC-Q-TOF)-based metabolomics analysis. The three most abundant biomarkers, identified as ginsenoside Rb3, notoginsenoside R1, and ginsenoside Rc, were the representative chemical components employed in the network pharmacology analysis. In addition, molecular docking and western blotting analyses revealed that the three compounds were effective binding ligands with Hsp90α, resulting in the inactivation of SRC and PI3K kinase, which eventually led to the inactivation of the Akt and ERK pathways and lung cancer suppression. The outcomes obtained herein demonstrated the intriguing chemical characteristics and potential functional activities of P. quinquefolius from Wendeng.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Biomarcadores/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Panax/química , Células A549 , Linhagem Celular Tumoral , China , Cromatografia Líquida de Alta Pressão/métodos , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Humanos , Metabolômica/métodos , Simulação de Acoplamento Molecular/métodos , Raízes de Plantas/química , Plantas Medicinais/química , Saponinas/química , Saponinas/farmacologia
6.
Mar Drugs ; 19(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572212

RESUMO

Chemical investigation of secondary metabolites from the marine-derived fungus Aspergillus austroafricanus Y32-2 resulted in the isolation of two new prenylated indole alkaloid homodimers, di-6-hydroxydeoxybrevianamide E (1) and dinotoamide J (2), one new pteridine alkaloid asperpteridinate A (3), with eleven known compounds (4-14). Their structures were elucidated by various spectroscopic methods including HRESIMS and NMR, while their absolute configurations were determined by ECD calculations. Each compound was evaluated for pro-angiogenic, anti-inflammatory effects in zebrafish models and cytotoxicity for HepG2 human liver carcinoma cells. As a result, compounds 2, 4, 5, 7, 10 exhibited pro-angiogenic activity in a PTK787-induced vascular injury zebrafish model in a dose-dependent manner, compounds 7, 8, 10, 11 displayed anti-inflammatory activity in a CuSO4-induced zebrafish inflammation model, and compound 6 showed significant cytotoxicity against HepG2 cells with an IC50 value of 30 µg/mL.


Assuntos
Aspergillus/metabolismo , Alcaloides Indólicos/isolamento & purificação , Pteridinas/isolamento & purificação , Microbiologia da Água , Indutores da Angiogênese/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Células Hep G2 , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Espectroscopia de Ressonância Magnética , Pteridinas/química , Pteridinas/farmacologia , Peixe-Zebra
7.
Food Funct ; 12(5): 2282-2291, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33599642

RESUMO

Phospholipids not only have high nutritional value, but also have a positive effect on cardiovascular disease, cancer and nervous system diseases. However, the activity of individual phospholipid classes of shrimp phospholipids is rarely studied. This paper researched phospholipids in the by-products of Penaeus vannamei processing. The phospholipid classes of the head from P. vannamei (PV) were separated by column chromatography, analyzed with UHPLC-Q-Exactive HF/MS, and quantified using ammonium ferrothiocyarate spectrophometry. In addition, their cardiovascular activities in zebrafish models were evaluated. A total of 5 phospholipid classes were obtained, including PV-PC, PV-PE, PV-PI, PV-PS and PV-SM, and identified as phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and sphingomyelin (SM), respectively. In the phospholipid profiling analysis, PV-PC (308 molecules) had the highest proportion with 85.24%, followed by PV-PE (139 types) with 9.32%, PV-SM (41 structures) with 4.75%, PV-PS (24 types) with 0.16%, and PV-PI (6 molecules) with 0.03%. In the quantitative analysis, the content of PV was 45.7%, and the purity of phospholipid classes was 75.5-88.1%. In the cardiovascular activity assays, the effects of different phospholipid classes were different. For example, PV-PC groups had strong angiogenesis activity, but PV-PE groups showed the opposite property. Our comprehensive profiling analysis and in vivo bioactivity evaluation of phospholipids from the head of P. vannamei can provide evidence for their targeted applications in the future.


Assuntos
Fármacos Cardiovasculares , Penaeidae/química , Fosfolipídeos , Indutores da Angiogênese/análise , Indutores da Angiogênese/química , Indutores da Angiogênese/isolamento & purificação , Indutores da Angiogênese/farmacologia , Animais , Fármacos Cardiovasculares/análise , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/farmacologia , Coração/efeitos dos fármacos , Fosfolipídeos/análise , Fosfolipídeos/química , Fosfolipídeos/isolamento & purificação , Fosfolipídeos/farmacologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA