Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 385(6709): 678-684, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39116220

RESUMO

Bacterial small molecule metabolites such as adenosine-diphosphate-d-glycero-ß-d-manno-heptose (ADP-heptose) and their derivatives act as effective innate immune agonists in mammals. We show that functional nucleotide-diphosphate-heptose biosynthetic enzymes (HBEs) are distributed widely in bacteria, archaea, eukaryotes, and viruses. We identified a conserved STTR5 motif as a hallmark of heptose nucleotidyltransferases that can synthesize not only ADP-heptose but also cytidine-diphosphate (CDP)- and uridine-diphosphate (UDP)-heptose. Both CDP- and UDP-heptoses are agonists that trigger stronger alpha-protein kinase 1 (ALPK1)-dependent immune responses than ADP-heptose in human and mouse cells and mice. We also produced ADP-heptose in archaea and verified its innate immune agonist functions. Hence, the ß-d-manno-heptoses are cross-kingdom, small-molecule, pathogen-associated molecular patterns that activate the ALPK1-dependent innate immune signaling cascade.


Assuntos
Heptoses , Nucleotidiltransferases , Moléculas com Motivos Associados a Patógenos , Animais , Humanos , Camundongos , Motivos de Aminoácidos , Archaea/enzimologia , Bactérias/enzimologia , Bactérias/metabolismo , Heptoses/biossíntese , Heptoses/imunologia , Imunidade Inata , Nucleotidiltransferases/química , Nucleotidiltransferases/classificação , Nucleotidiltransferases/genética , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Proteínas Quinases/metabolismo , Vírus/enzimologia
2.
J Inorg Biochem ; 258: 112631, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38843774

RESUMO

A diverse set of neutral half-sandwich iminoamido iridium and ruthenium organometallic complexes is synthesized through the utilization of Schiff base pro-ligands with N˄N donors. Notably, these metal complexes with varying leaving groups (Cl- or OAc-) are formed by employing different quantities of the deprotonating agent NaOAc, and exhibit promising cytotoxicity against various cancer cell lines such as A549 and cisplatin-resistant A549/DDP lung cancer cells, as well as HeLa cells, with IC50 values spanning from 9.26 to 15.98 µM. Cytotoxicity and anticancer selectivity (SI: 1.9-2.4) of these metal complexes remain unaffected by variations in the metal center, leaving group, and ligand substitution. Further investigations reveal that these metal complexes specifically target mitochondria, leading to the depolarization of the mitochondrial membrane and instigating the production of intracellular reactive oxygen species. Furthermore, the metal complexes are found to induce late apoptosis and disrupt the cell cycle, leading to G2/M cell cycle arrest specifically in A549 cancer cells. In light of these findings, it is evident that the primary mechanism contributing to the anticancer effectiveness of these metal complexes is the redox pathway.


Assuntos
Antineoplásicos , Apoptose , Cisplatino , Complexos de Coordenação , Resistencia a Medicamentos Antineoplásicos , Irídio , Mitocôndrias , Rutênio , Humanos , Irídio/química , Irídio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células A549 , Células HeLa , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos
3.
Dalton Trans ; 53(5): 1977-1988, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38205595

RESUMO

Most platinum group-based cyclometalated neutral and cationic anticancer complexes with the general formula [(C^N)2Ir(XY)]0/+ (neutral complex: XY = bidentate anionic ligand; cationic complex: XY = bidentate neutral ligand) are notable owing to their intrinsic luminescence properties, good cell permeability, interaction with some biomolecular targets and unique mechanisms of action (MoAs). We herein synthesized a series of neutral and cationic amine-imine cyclometalated iridium(III) complexes using Schiff base ligands with sp2-N/sp3-N N^NH2 chelating donors. The cyclometalated iridium(III) complexes were identified by various techniques. They were stable in aqueous media, displayed moderate fluorescence and exhibited affinity toward bovine serum albumin (BSA). The complexes demonstrated promising cytotoxicity against lung cancer A549 cells, cisplatin-resistant lung cancer A549/DDP cells, cervical carcinoma HeLa cells and human liver carcinoma HepG2 cells, with IC50 values ranging from 9.98 to 19.63 µM. Unfortunately, these complexes had a low selectivity (selectivity index: 1.62-1.98) towards A549 cells and BEAS-2B normal cells. The charge pattern of the metal center (neutral or cationic) and ligand substituents showed little influence on the cytotoxicity and selectivity of these complexes. The study revealed that these complexes could target mitochondria, cause depolarization of the mitochondrial membrane, and trigger the production of intracellular ROS. Additionally, the complexes were observed to induce late apoptosis and perturb the cell cycle in the G2/M or S phase in A549 cells. Based on these results, it appears that the anticancer efficacy of these complexes was predominantly attributed to the redox mechanism.


Assuntos
Antineoplásicos , Carcinoma , Complexos de Coordenação , Neoplasias Pulmonares , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Células HeLa , Irídio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Ligantes , Quelantes/farmacologia , Mitocôndrias/metabolismo , Neoplasias Pulmonares/metabolismo , Carcinoma/metabolismo , Apoptose , Linhagem Celular Tumoral
4.
Inorg Chem ; 62(51): 21379-21395, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38096360

RESUMO

The synthesis and biological evaluation of stable 16-electron half-sandwich complexes have remained scarce. We herein present the different coordination modes (16-electron or 18-electron) between half-sandwich iridium(III) complexes and ruthenium(II) complexes derived from the same amine-imine ligands chelating hybrid sp3-N/sp2-N donors. The 16-electron iridium(III) and 18-electron ruthenium(II) complexes with different counteranions were obtained and identified by various techniques. The promising cytotoxicity of these complexes against A549 lung cancer cells, cisplatin-resistant A549/DPP cells, cervical carcinoma HeLa cells, and human hepatocellular liver carcinoma HepG2 cells was observed with IC50 values ranging from 5.4 to 16.3 µM. Moreover, these complexes showed a certain selectivity (selectivity index: 2.1-3.7) toward A549 cells and BEAS-2B normal cells. The variation of metal center, counteranion, 16/18-electron coordination mode, and ligand substituents showed little influence on the cytotoxicity and selectivity of these complexes. The mechanism of action study showed that these complexes could target mitochondria, induce the depolarization of the mitochondrial membrane, and promote the generation of intracellular reactive oxygen species (ROS). Further, the induction of cell apoptosis and the perturbation of the cell cycle in the G0/G1 phase were also observed for these complexes. Overall, it seems that the redox mechanism dominated the anticancer efficacy of these complexes.


Assuntos
Antineoplásicos , Carcinoma , Complexos de Coordenação , Rutênio , Humanos , Antineoplásicos/farmacologia , Células HeLa , Iminas , Irídio/farmacologia , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Aminas/farmacologia , Ligantes , Elétrons , Apoptose , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo
5.
Inorg Chem ; 62(37): 15118-15137, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37671819

RESUMO

The biological efficacy of half-sandwich platinum group organometallic complexes of the formula [(η5-Cpx)/(η6-arene)M(XY)Cl]0/+ (XY = bidentate ligands; Cpx = functionalized cyclopentadienyl; M = Ir, Rh, Ru, Os) has received considerable attention due to the significance of the metal center, chelating ligand, and Cpx/arene moieties in defining their anticancer potency and selectivity. With a facile access to the BIAN-derived imine-amine ligands using alkylaluminum as the reductant, we herein described the preparation and characterization of 16 half-sandwich Ir(III), Rh(III), and Ru(II) complexes chelating the hybrid sp2-N/sp3-N donor ligand. A nonplanar five-member metallacycle was confirmed by X-ray single-crystal structures of Ir1-Ir3, Ir7, Rh1, Ru1, and Ru4. The attempt to prepare imine-amido complexes using a base as the deprotonating agent led to the mixture of imine-amine complexes, within which the leaving group Cl- was displaced, and 16-electron imine-amido complexes without Cl-. The half-sandwich imine-amine complexes in this system underwent rapid hydrolysis in aqueous solution, exhibited weak photoluminescence, and showed the ability of binding to CT-DNA and BSA. The cytotoxicity of all imine-amine complexes against A549 lung cancer cell lines, HeLa cervical cancer cell lines, and 4T1 mouse breast cancer cells was determined by an MTT assay. The IC50 values of these complexes were in a range of 5.71-67.28 µM. Notably, most of these complexes displayed improved selectivity toward A549 cancer cells versus noncancerous BEAS-2B cells in comparison with the corresponding α-diimine complexes chelating the sp2-N/sp2-N donor ligand, which have been shown no selectivity in our previous report. The anticancer selectivity of these complexes appeared to be related to the redox-based mechanism including the catalytic oxidation of NADH to NAD+, reactive oxygen species (ROS) generation, and depolarization of the mitochondrial membrane. Further, inducing apoptosis of these complexes in A549 cancer cells and BEAS-2B normal cells also correlated with their anticancer selectivity, indicating the apoptosis mode of cell death in this system. In addition, these complexes could enter A549 cells via energy-dependent pathway and were able to impede the in vitro migration of A549 cells.


Assuntos
Ródio , Rutênio , Animais , Camundongos , Humanos , Ródio/farmacologia , Rutênio/farmacologia , Irídio/farmacologia , Ligantes , Aminas , Células HeLa
6.
Acta Pharm Sin B ; 13(2): 765-774, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873169

RESUMO

l-Heptopyranoses are important components of bacterial polysaccharides and biological active secondary metabolites like septacidin (SEP), which represents a group of nucleoside antibiotics with antitumor, antifungal, and pain-relief activities. However, little is known about the formation mechanisms of those l-heptose moieties. In this study, we deciphered the biosynthetic pathway of the l,l-gluco-heptosamine moiety in SEPs by functional characterizing four genes and proposed that SepI initiates the process by oxidizing the 4'-hydroxyl of l-glycero-α-d-manno-heptose moiety of SEP-328 (2) to a keto group. Subsequently, SepJ (C5 epimerase) and SepA (C3 epimerase) shape the 4'-keto-l-heptopyranose moiety by sequential epimerization reactions. At the last step, an aminotransferase SepG installs the 4'-amino group of the l,l-gluco-heptosamine moiety to generate SEP-327 (3). An interesting phenomenon is that the SEP intermediates with 4'-keto-l-heptopyranose moieties exist as special bicyclic sugars with hemiacetal-hemiketal structures. Notably, l-pyranose is usually converted from d-pyranose by bifunctional C3/C5 epimerase. SepA is an unprecedented monofunctional l-pyranose C3 epimerase. Further in silico and experimental studies revealed that it represents an overlooked metal dependent-sugar epimerase family bearing vicinal oxygen chelate (VOC) architecture.

7.
Sci Total Environ ; 850: 157829, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932863

RESUMO

Microplastic (MP) pollution has increasingly become an enormous global challenge due to the ubiquity and uncertain environmental performance, especially for nano- and micro- sized MPs. In this work, the performance and mechanisms in coagulation of 100 nm-5.0 µm sized polystyrene particles using an etherified starch-based coagulant (St-CTA) assisted by polysilicic acid (PSA) were systematically studied on the basis of the changes in MPs removal rates under various pH levels and in the presence of different coexisting inorganic and organic substances, zeta potentials of supernatants, and floc properties. St-CTA in conjunction with PSA had a high performance in coagulation of nano- and micro- sized MPs from water with a lower optimal dose and larger and compacter flocs. Besides, the MPs removal rate can be improved in acidic and coexisting salt conditions. The efficient performance in removal of MPs by this enhanced coagulation was owing to the synergic effect, that is, the effective aggregation of MPs through the charge neutralization of St-CTA followed by the efficient netting-bridging effect of PSA. The effectiveness of this enhanced coagulation was further confirmed by removal of two other typical nano-sized MPs, such as poly(methyl methacrylate) and poly(vinyl chloride), from different water sources including tap water, river water, and sludge supernatant from a sewage treatment plant. This work provided a novel enhanced coagulation technique that can effectively remove nano- and micro- sized MPs from water.


Assuntos
Cloreto de Vinil , Poluentes Químicos da Água , Purificação da Água , Floculação , Microplásticos , Plásticos , Polimetil Metacrilato , Poliestirenos , Esgotos , Amido , Água , Poluentes Químicos da Água/análise
8.
Small Methods ; 5(3): e2001056, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34927835

RESUMO

Designing multi-functional separators is one of the effective strategies for achieving high-performance lithium-sulfur (Li-S) batteries. In this work, polyaniline (PANI) encapsulated amorphous vanadium pentoxide (V2 O5 ) nanowires (general formula V2 O5 ·nH2 O and abbreviated as VOH) are synthesized by a facile in situ chemical oxidative polymerization method, and utilized as a basic building block for the preparation of functional interlayers on the commercial polypropylene (PP) separator, generating a VOH@PANI-PP separator with multi-functionalities. Compared to the crystalline V2 O5 , the amorphous V2 O5 shows enhanced properties of polysulfide adsorption, catalytic activity, as well as ionic conductivity. Therefore, within the VOH@PANI-PP separator, the amorphous V2 O5 nanowire component contributes to the strong adsorption of polysulfides, the high catalytic activity for polysulfides conversion, and the high ionic conductivity. The PANI component further strengthens the above effects, improves the electrical conductivity, and enhances the flexibility of the modified separator. Benefiting from the synergistic effects, the VOH@PANI-PP separator effectively suppresses polysulfide shuttling and improves the cycling stability of its composed Li-S batteries. This work provides a new research strategy for the development of efficient separators in rechargeable batteries by judiciously integrating the amorphous metal oxide with a conductive polymer.

9.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299310

RESUMO

Oxidative stress is a major contributor to the pathogenesis of various inflammatory diseases. Accumulating evidence has shown that oxidative stress is characterized by the overproduction of reactive oxygen species (ROS). Previous reviews have highlighted inflammatory signaling pathways, biomarkers, molecular targets, and pathogenetic functions mediated by oxidative stress in various diseases. The inflammatory signaling cascades are initiated through the recognition of host cell-derived damage associated molecular patterns (DAMPs) and microorganism-derived pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). In this review, the effects of PRRs from the Toll-like (TLRs), the retinoic acid-induced gene I (RIG-I)-like receptors (RLRs) and the NOD-like (NLRs) families, and the activation of these signaling pathways in regulating the production of ROS and/or oxidative stress are summarized. Furthermore, important directions for future studies, especially for pathogen-induced signaling pathways through oxidative stress are also reviewed. The present review will highlight potential therapeutic strategies relevant to inflammatory diseases based on the correlations between ROS regulation and PRRs-mediated signaling pathways.


Assuntos
Inflamação/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Alarminas/genética , Alarminas/imunologia , Alarminas/metabolismo , Animais , Autofagia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , Proteína DEAD-box 58/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/terapia , Modelos Biológicos , Proteínas NLR/genética , Proteínas NLR/imunologia , Proteínas NLR/metabolismo , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Estresse Oxidativo , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Ativação Transcricional
10.
J Nanosci Nanotechnol ; 21(10): 5319-5328, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33875125

RESUMO

Transition metal and nitrogen co-doped carbon-based catalysts (TM-N-C) have become the most promising catalysts for Pt/C due to their wide range of sources, low cost, high catalytic activity, excellent stability and strong resistance to poisoning, especially Fe-N-C metal-organic frameworks (MOFs), which are some of the most promising precursors for the preparation of Fe-N-C catalysts due to their inherent properties, such as their highly ordered three-dimensional framework structure, controlled porosity, and tuneable chemistry. Based on these, in this paper, different iron sources were added to synthesis a sort of zeolitic imidazole frameworks (ZIF-8). Then the imidazole salt in ZIF-8 was rearranged into high N-doped carbon by high-temperature pyrolysis to prepare the Fe-N-C catalyst. We studied the physical characteristics of the catalysts by different iron sources and their effects on the catalytic properties of the oxygen reduction reaction (ORR). From the point of morphology, various iron sources have a positive influence on maintaining the morphology of ZIF-8 polyhedron. Fe-N/C-Fe(NO3)3 has the same anion as zinc nitrate, and can maintain a polyhedral morphology after high-temperature calcination. It had the highest ORR catalytic activity compared to the other four catalyst materials, which proved that there is a certain relationship between morphology and performance. This paper will provide a useful reference and new models for the development of high-performance ORR catalysts without precious metals.

11.
Nat Commun ; 10(1): 3665, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413323

RESUMO

Anaerobic bacteria represent an overlooked rich source of biological and chemical diversity. Due to the challenge of cultivation and genetic intractability, assessing the capability of their biosynthetic gene clusters (BGCs) for secondary metabolite production requires an efficient heterologous expression system. However, this kind of host system is still unavailable. Here, we use the facultative anaerobe Streptococcus mutans UA159 as a heterologous host for the expression of BGCs from anaerobic bacteria. A natural competence based large DNA fragment cloning (NabLC) technique was developed, which can move DNA fragments up to 40-kb directly and integrate a 73.7-kb BGC to the genome of S. mutans UA159 via three rounds of NabLC cloning. Using this system, we identify an anti-infiltration compound, mutanocyclin, from undefined BGCs from human oral bacteria. We anticipate this host system will be useful for heterologous expression of BGCs from anaerobic bacteria.


Assuntos
Bactérias Anaeróbias/genética , Vias Biossintéticas/genética , Clonagem Molecular/métodos , Família Multigênica/genética , Streptococcus mutans/genética , Humanos , Microbiota/genética , Boca , Peptídeos , Policetídeos , Terpenos
12.
Beilstein J Nanotechnol ; 10: 1423-1433, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31431854

RESUMO

Pure WO3 sensors and Mn3O4/WO3 composite sensors with different Mn concentrations (1 atom %, 3 atom % and 5 atom %) were successfully prepared through a facile hydrothermal method. As gas sensing materials, their sensing performance at different temperatures was systematically investigated for gas detection. The devices displayed different sensing responses toward different gases at specific temperatures. The gas sensing performance of Mn3O4/WO3 composites (especially at 3 atom % Mn) were far improved compared to sensors based on pure WO3, where the improvement is related to the heterojunction formed between the two metal oxides. The sensor based on the Mn3O4/WO3 composite with 3 atom % Mn showed a high selective response to hydrogen sulfide (H2S), ammonia (NH3) and carbon monoxide (CO) at working temperatures of 90 °C, 150 °C and 210 °C, respectively. The demonstrated superior selectivity opens the door for potential applications in gas recognition and detection.

13.
Mikrochim Acta ; 186(1): 39, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30569315

RESUMO

An electrochemical cytosensor for the detection of the non-small-cell lung cancer cell line A549 (NSCLC) had been developed. A microwave-hydrothermal method was employed to prepare monodisperse colloidal carbon nanospheres (CNSs). Gold nanoparticles (AuNPs) were placed on the surface of the colloidal CNSs by self-assembly to obtain 3D-structured microspheres of the type CNS@AuNP. The results of an MTT assay show the microspheres to possess good biocompatibility. The CNS@AuNP nanocomposite was then placed, in a chitosan film, on a glassy carbon electrode (GCE). The voltammetric signals and detection sensitivity are significantly enhanced owing to the synergistic effect of CNSs and AuNPs. A cytosensor was then obtained by immobilization of antibody against the carcinoembryonic antigen (which is a biomarker for NSCLC) on the GCE via crosslinking with glutaraldehyde. Hexacyanoferrate is used as an electrochemical probe, and the typical working voltage is 0.2 V (vs. SCE). If exposed to A549 cells, the differential pulse voltammetric signal decreases in the 4.2 × 10-1 to 4.2 × 10-6 cells mL-1 concentration range, and the detection limit is 14 cells mL-1 (at S/N = 3). Graphical abstract Schematic presentation of design strategy and fabrication process of the electrochemical cytosensor for A549 cells. (CNS: carbon nanospheres; GA: glutaraldehyde; PEI: polyethyleneimine; AuNPs: gold nanoparticles; BSA: Bovine serum albumin).


Assuntos
Carbono , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Detecção Precoce de Câncer/métodos , Nanosferas/química , Células A549 , Anticorpos Imobilizados , Antígeno Carcinoembrionário/imunologia , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro , Humanos , Limite de Detecção , Nanopartículas Metálicas/química
14.
J Am Chem Soc ; 140(51): 18009-18015, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30516971

RESUMO

Alboflavusins (AFNs) are a group of cyclohexapeptides with moderate antibacterial and antitumor activities from Streptomyces alboflavus sp. 313. In vivo and in vitro studies proposed that AFNs are biosynthesized by a nonribosomal peptide synthetase machinery, and the 6-Cl-L-Trp precursor is supplied by a tryptophan halogenase gene located outside the afn gene cluster. Guided by the structure-activity relationship knowledge about the AFN-like cyclohexapeptides, two dimeric AFNs (di-AFNs) with regiospecific biaryl linkages were designed and generated biotechnologically by expressing the P450 gene hmtS or clpS in S. alboflavus wild-type and mutant strains. The di-AFNs displayed much better antibacterial and antitumor activities than their monomers as anticipated, exemplifying a rational strategy to generate natural product congeners with improved bioactivities.

15.
Proc Natl Acad Sci U S A ; 115(11): 2818-2823, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483275

RESUMO

Seven-carbon-chain-containing sugars exist in several groups of important bacterial natural products. Septacidin represents a group of l-heptopyranoses containing nucleoside antibiotics with antitumor, antifungal, and pain-relief activities. Hygromycin B, an aminoglycoside anthelmintic agent used in swine and poultry farming, represents a group of d-heptopyranoses-containing antibiotics. To date, very little is known about the biosynthesis of these compounds. Here we sequenced the genome of the septacidin producer and identified the septacidin gene cluster by heterologous expression. After determining the boundaries of the septacidin gene cluster, we studied septacidin biosynthesis by in vivo and in vitro experiments and discovered that SepB, SepL, and SepC can convert d-sedoheptulose-7-phosphate (S-7-P) to ADP-l-glycero-ß-d-manno-heptose, exemplifying the involvement of ADP-sugar in microbial natural product biosynthesis. Interestingly, septacidin, a secondary metabolite from a gram-positive bacterium, shares the same ADP-heptose biosynthesis pathway with the gram-negative bacterium LPS. In addition, two acyltransferase-encoding genes sepD and sepH, were proposed to be involved in septacidin side-chain formation according to the intermediates accumulated in their mutants. In hygromycin B biosynthesis, an isomerase HygP can recognize S-7-P and convert it to ADP-d-glycero-ß-d-altro-heptose together with GmhA and HldE, two enzymes from the Escherichia coli LPS heptose biosynthetic pathway, suggesting that the d-heptopyranose moiety of hygromycin B is also derived from S-7-P. Unlike the other S-7-P isomerases, HygP catalyzes consecutive isomerizations and controls the stereochemistry of both C2 and C3 positions.


Assuntos
Escherichia coli/metabolismo , Higromicina B/biossíntese , Fosfatos Açúcares/metabolismo , Vias Biossintéticas , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Heptoses/metabolismo , Higromicina B/química , Nucleosídeos de Purina/biossíntese , Nucleosídeos de Purina/química , Fosfatos Açúcares/química
16.
Mol Med Rep ; 17(3): 3640-3646, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29286087

RESUMO

Growth differentiation factor (GDF)­5 serves a role in tissue development and tenomodulin serves an important role in the development of tendons. The effects of GDF­5 on mesenchymal stem cells (MSCs), particularly with regards to tendon bioengineering, are poorly understood. The present study aimed to investigate the effects of GDF­5 on cell viability and tenomodulin expression in MSCs from murine compact bone. MSCs were isolated from murine compact bones and confirmed by flow cytometric analysis. In addition, the adipogenic, osteoblastic and chondrocyte differentiation capabilities of the MSCs were determined. MSCs were treated with GDF­5 and the effects of GDF­5 on MSC viability were determined. The mRNA and protein expression levels of tenomodulin were detected by reverse transcription­quantitative polymerase chain reaction and western blotting, respectively. MSCs from murine compact bone were successfully isolated. GDF­5 had optimal effects on cell viability at 100 ng/ml (+36.9% of control group without GDF­5 treatment, P<0.01) and its effects peaked after 6 days of treatment (+56.6% of control group, P<0.001). Compared with the control group, treatment with 100 ng/ml GDF­5 for 4 days enhanced the mRNA expression levels of tenomodulin (3.56±0.94 vs. 1.02±0.25; P<0.05). In addition, p38 was activated by GDF­5, as determined by enhanced expression levels of phosphorylated p38 (p­p38). The GDF­5­induced protein expression levels of p­p38 and tenomodulin were markedly inhibited following treatment with SB203580, an inhibitor of p38 mitogen­activated protein kinase. These results suggested that GDF­5 treatment may increase tenomodulin protein expression via phosphorylation of p38 in MSCs from murine compact bone. These findings may aid the future development of tendon bioengineering.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fator 5 de Diferenciação de Crescimento/farmacologia , Proteínas de Membrana/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Osso Cortical/citologia , Feminino , Imidazóis/farmacologia , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
17.
CNS Neurosci Ther ; 20(12): 1056-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25367718

RESUMO

AIMS: There is still no effective way to save a surviving healthy mind when there is critical organ failure in the body. The next frontier in CTA is allo-head and body reconstruction (AHBR), and just as animal models were key in the development of CTA, they will be crucial in establishing the procedures of AHBR for clinical translation. METHODS AND RESULTS: Our approach, pioneered in mice, involves retaining the donor brain stem and transplanting the recipient head. Our preliminary data in mice support that this allows for retention of breathing and circulatory function. Critical aspects of the current protocol include avoiding cerebral ischemia through cross-circulation (donor to recipient) and retaining the donor brain stem. Successful clinical translation of AHBR will become a milestone of medical history and potentially could save millions of people. CONCLUSIONS: This experimental study has confirmed a method to avoid cerebral ischemia during the surgery and solved an important part of the problem of how to accomplish long-term survival after transplantation and preservation of the donor brain stem.


Assuntos
Cabeça/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Transplante Homólogo/métodos , Animais , Eletrocardiografia , Eletroencefalografia , Camundongos , Camundongos Endogâmicos , Modelos Animais , Sinais Vitais/fisiologia
18.
J Nanosci Nanotechnol ; 11(12): 11128-32, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22409070

RESUMO

Well-aligned and uniform Nickel nanochains with diameters ranging from 20 to 110 nm have been synthesized using a simple template-free solution-phase method using environment friendly reagents under diverse temperature and magnetic field. Our results indicate that the size and morphology of as-prepared nanochains can be controlled by adjusting the reaction temperature and the applied magnetic fields, respectively. The formation of the aligned chains can be explained by the interactions of magnetic dipoles in the presence of magnetic field. Systematical magnetic measurements demonstrate that the saturation magnetization of the synthesized samples depends crucially on the particle size. Furthermore, the magnetic anisotropy of the well-aligned nickel nanochains is dominated by the shape anisotropy.

19.
Nanoscale Res Lett ; 5(3): 597-602, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-20672141

RESUMO

Highly uniform and well-aligned one-dimensional Ni nanochains with controllable diameters, including 33, 78, and 120 nm, have been synthesized by applying an external magnetic field without any surface modifying agent. The formation can be explained by the interactions of magnetic dipoles in the presence of applied magnetic field. Magnetic measurements demonstrate that the shape anisotropy dominates the magnetic anisotropy. The demagnetization factor, ∆N, is in the range of 0.23-0.36.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA