Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; : mbcE24020073, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696259

RESUMO

Transforming growth factor-ß (TGF-ß) signaling plays a crucial role in pathogenesis, such as accelerating tissue fibrosis and promoting tumor development at the later stages of tumorigenesis by promoting epithelial-mesenchymal transition, cancer cell migration, and invasion. Targeting TGF-ß signaling is a promising therapeutic approach, but non-specific inhibition may result in adverse effects. In this study, we focus on the Smad2/3-Smad4 complex, a key component in TGF-ß signaling transduction, as a potential target for cancer therapy. Through a phase-separated condensate-aided biomolecular interaction system, we identified verteporfin (VP) as a small-molecule inhibitor that specifically targets the Smad2/3-Smad4 interaction. VP effectively disrupted the interaction between Smad2/3 and Smad4 and thereby inhibited canonical TGF-ß signaling, but not the interaction between Smad1 and Smad4 in BMP signaling. Furthermore, VP exhibited inhibitory effects on TGF-ß-induced epithelial-mesenchymal transition and cell migration. Our findings indicate a novel approach to develop protein-protein interaction inhibitors of the canonical TGF-ß signaling pathway for treatments of related diseases.

2.
Sci China Life Sci ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38561483

RESUMO

A common approach in therapeutic protein development involves employing synthetic ligands with multivalency, enabling sophisticated control of signal transduction. Leveraging the emerging concept of liquid-liquid phase separation (LLPS) and its ability to organize cell surface receptors into functional compartments, we herein have designed modular ligands with phase-separation modalities to engineer programmable interreceptor communications and precise control of signal pathways, thus inducing the rapid, potent, and specific apoptosis of tumor cells. Despite their simplicity, these "triggers", named phase-separated Tumor Killers (hereafter referred to as psTK), are sufficient to yield interreceptor clustering of death receptors (represented by DR5) and tumor-associated receptors, with notable features: LLPS-mediated robust high-order organization, well-choreographed conditional activation, and broad-spectrum capacity to potently induce apoptosis in tumor cells. The development of novel therapeutic proteins with phase-separation modalities showcases the power of spatially reorganizing signal transduction. This approach facilitates the diversification of cell fate and holds promising potential for targeted therapies against challenging tumors.

3.
Mol Cell ; 84(9): 1637-1650.e10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38604171

RESUMO

Long interspersed element-1 (LINE-1 or L1) comprises 17% of the human genome, continuously generates genetic variations, and causes disease in certain cases. However, the regulation and function of L1 remain poorly understood. Here, we uncover that L1 can enrich RNA polymerase IIs (RNA Pol IIs), express L1 chimeric transcripts, and create contact domain boundaries in human cells. This impact of L1 is restricted by a nuclear matrix protein scaffold attachment factor B (SAFB) that recognizes transcriptionally active L1s by binding L1 transcripts to inhibit RNA Pol II enrichment. Acute inhibition of RNA Pol II transcription abolishes the domain boundaries associated with L1 chimeric transcripts, indicating a transcription-dependent mechanism. Deleting L1 impairs domain boundary formation, and L1 insertions during evolution have introduced species-specific domain boundaries. Our data show that L1 can create RNA Pol II-enriched regions that alter genome organization and that SAFB regulates L1 and RNA Pol II activity to preserve gene regulation.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Proteínas de Ligação à Região de Interação com a Matriz , RNA Polimerase II , Receptores de Estrogênio , Transcrição Gênica , Humanos , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Regulação da Expressão Gênica , Ligação Proteica , Células HEK293 , Genoma Humano
4.
Nature ; 627(8005): 847-853, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480885

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain mediate recognition of strain-specific pathogen effectors, typically via their C-terminal ligand-sensing domains1. Effector binding enables TIR-encoded enzymatic activities that are required for TIR-NLR (TNL)-mediated immunity2,3. Many truncated TNL proteins lack effector-sensing domains but retain similar enzymatic and immune activities4,5. The mechanism underlying the activation of these TIR domain proteins remain unclear. Here we show that binding of the TIR substrates NAD+ and ATP induces phase separation of TIR domain proteins in vitro. A similar condensation occurs with a TIR domain protein expressed via its native promoter in response to pathogen inoculation in planta. The formation of TIR condensates is mediated by conserved self-association interfaces and a predicted intrinsically disordered loop region of TIRs. Mutations that disrupt TIR condensates impair the cell death activity of TIR domain proteins. Our data reveal phase separation as a mechanism for the activation of TIR domain proteins and provide insight into substrate-induced autonomous activation of TIR signalling to confer plant immunity.


Assuntos
Trifosfato de Adenosina , Arabidopsis , NAD , Nicotiana , Separação de Fases , Proteínas de Plantas , Domínios Proteicos , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Morte Celular , Mutação , NAD/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/imunologia , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos/genética , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Transdução de Sinais , Receptores Toll-Like/química , Receptores de Interleucina-1/química
5.
Protein Cell ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38069453

RESUMO

Biomolecular condensation, driven by multivalency, serves as a fundamental mechanism within cells, facilitating the formation of distinct compartments, including membraneless organelles that play essential roles in various cellular processes. Perturbations in the delicate equilibrium of condensation, whether resulting in gain or loss of phase separation, have robustly been associated with cellular dysfunction and physiological disorders. As ongoing research endeavors wholeheartedly embrace this newly acknowledged principle, a transformative shift is occurring in our comprehension of disease. Consequently, significant strides have been made in unraveling the profound relevance and potential causal connections between abnormal phase separation and various diseases. This comprehensive review presents compelling recent evidence that highlight the intricate associations between aberrant phase separation and neurodegenerative diseases, cancers, and infectious diseases. Additionally, we provide a succinct summary of current efforts and propose innovative solutions for the development of potential therapeutics to combat the pathological consequences attributed to aberrant phase separation.

6.
Nat Chem Biol ; 19(11): 1372-1383, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37592155

RESUMO

RNA molecules with the expanded CAG repeat (eCAGr) may undergo sol-gel phase transitions, but the functional impact of RNA gelation is completely unknown. Here, we demonstrate that the eCAGr RNA may form cytoplasmic gel-like foci that are rapidly degraded by lysosomes. These RNA foci may significantly reduce the global protein synthesis rate, possibly by sequestering the translation elongation factor eEF2. Disrupting the eCAGr RNA gelation restored the global protein synthesis rate, whereas enhanced gelation exacerbated this phenotype. eEF2 puncta were significantly enhanced in brain slices from a knock-in mouse model and from patients with Huntington's disease, which is a CAG expansion disorder expressing eCAGr RNA. Finally, neuronal expression of the eCAGr RNA by adeno-associated virus injection caused significant behavioral deficits in mice. Our study demonstrates the existence of RNA gelation inside the cells and reveals its functional impact, providing insights into repeat expansion diseases and functional impacts of RNA phase transition.


Assuntos
Doença de Huntington , Expansão das Repetições de Trinucleotídeos , Humanos , Camundongos , Animais , RNA/genética , RNA/metabolismo , Biossíntese de Proteínas , Doença de Huntington/genética , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
7.
Nat Chem Biol ; 19(10): 1223-1234, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37400539

RESUMO

Cancer-associated chromosomal rearrangements can result in the expression of numerous pathogenic fusion proteins. The mechanisms by which fusion proteins contribute to oncogenesis are largely unknown, and effective therapies for fusion-associated cancers are lacking. Here we comprehensively scrutinized fusion proteins found in various cancers. We found that many fusion proteins are composed of phase separation-prone domains (PSs) and DNA-binding domains (DBDs), and these fusions have strong correlations with aberrant gene expression patterns. Furthermore, we established a high-throughput screening method, named DropScan, to screen drugs capable of modulating aberrant condensates. One of the drugs identified via DropScan, LY2835219, effectively dissolved condensates in reporter cell lines expressing Ewing sarcoma fusions and partially rescued the abnormal expression of target genes. Our results indicate that aberrant phase separation is likely a common mechanism for these PS-DBD fusion-related cancers and suggest that modulating aberrant phase separation is a potential route to treat these diseases.


Assuntos
Proteína Proto-Oncogênica c-fli-1 , Sarcoma de Ewing , Humanos , Solubilidade , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Linhagem Celular
8.
Acta Biochim Biophys Sin (Shanghai) ; 55(7): 1133-1152, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37475546

RESUMO

Membrane-less organelles (MLOs) formed through liquid-liquid phase separation (LLPS) are associated with numerous important biological functions, but the abnormal phase separation will also dysregulate the physiological processes. Emerging evidence points to the importance of LLPS in human health and diseases. Nevertheless, despite recent advancements, our knowledge of the molecular relationship between LLPS and diseases is frequently incomplete. In this review, we outline our current understanding about how aberrant LLPS affects developmental disorders, tandem repeat disorders, cancers and viral infection. We also examine disease mechanisms driven by aberrant condensates, and highlight potential treatment approaches. This study seeks to expand our understanding of LLPS by providing a valuable new paradigm for understanding phase separation and human disorders, as well as to further translate our current knowledge regarding LLPS into therapeutic discoveries.


Assuntos
Organelas , Humanos
9.
Sci China Life Sci ; 66(2): 283-297, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36115893

RESUMO

B-cell lymphoma 10 (Bcl10) is a scaffolding protein that functions as an upstream regulator of NF-κB signaling by forming a complex with Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) and CARD-coiled coil protein family. This study showed that Bcl10 was involved in type I interferon (IFN) expression in response to DNA virus infection and that Bcl10-deficient mice were more susceptible to Herpes simplex virus 1 (HSV-1) infection than control mice. Mechanistically, DNA virus infection can trigger Bcl10 recruitment to the STING-TBK1 complex, leading to Bcl10 phosphorylation by TBK1. The phosphorylated Bcl10 undergoes droplet-like condensation and forms oligomers, which induce TBK1 phosphorylation and translocation to the perinuclear region. The activated TBK1 phosphorylates IRF3, which induces the expression of type I IFNs. This study elucidates that Bcl10 induces an innate immune response by undergoing droplet-like condensation and participating in signalosome formation downstream of the cGAS-STING pathway.


Assuntos
Proteína 10 de Linfoma CCL de Células B , Imunidade Inata , Animais , Camundongos , Proteína 10 de Linfoma CCL de Células B/genética , Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Imunidade Inata/fisiologia , NF-kappa B/metabolismo , Fosforilação
10.
Cell ; 185(8): 1325-1345.e22, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35366418

RESUMO

Protein aggregation is a hallmark of multiple human pathologies. Autophagy selectively degrades protein aggregates via aggrephagy. How selectivity is achieved has been elusive. Here, we identify the chaperonin subunit CCT2 as an autophagy receptor regulating the clearance of aggregation-prone proteins in the cell and the mouse brain. CCT2 associates with aggregation-prone proteins independent of cargo ubiquitination and interacts with autophagosome marker ATG8s through a non-classical VLIR motif. In addition, CCT2 regulates aggrephagy independently of the ubiquitin-binding receptors (P62, NBR1, and TAX1BP1) or chaperone-mediated autophagy. Unlike P62, NBR1, and TAX1BP1, which facilitate the clearance of protein condensates with liquidity, CCT2 specifically promotes the autophagic degradation of protein aggregates with little liquidity (solid aggregates). Furthermore, aggregation-prone protein accumulation induces the functional switch of CCT2 from a chaperone subunit to an autophagy receptor by promoting CCT2 monomer formation, which exposes the VLIR to ATG8s interaction and, therefore, enables the autophagic function.


Assuntos
Chaperonina com TCP-1 , Macroautofagia , Agregados Proteicos , Animais , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Chaperonina com TCP-1/metabolismo , Proteína Sequestossoma-1/metabolismo
11.
Cell Res ; 32(7): 659-669, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35477997

RESUMO

Biomolecular condensation driven by liquid-liquid phase separation (LLPS) is key to assembly of membraneless organelles in numerous crucial pathways. It is largely unknown how cellular structures or components spatiotemporally regulate LLPS and condensate formation. Here we reveal that cytoskeletal dynamics can control the condensation of p62 bodies comprising the autophagic adaptor p62/SQSTM1 and poly-ubiquitinated cargos. Branched actin networks are associated with p62 bodies and are required for their condensation. Myosin 1D, a branched actin-associated motor protein, drives coalescence of small nanoscale p62 bodies into large micron-scale condensates along the branched actin network. Impairment of actin cytoskeletal networks compromises the condensation of p62 bodies and retards substrate degradation by autophagy in both cellular models and Myosin 1D knockout mice. Coupling of LLPS scaffold to cytoskeleton systems may represent a general mechanism by which cells exert spatiotemporal control over phase condensation processes.


Assuntos
Actinas , Autofagia , Actinas/metabolismo , Animais , Autofagia/fisiologia , Camundongos , Miosinas/metabolismo , Proteína Sequestossoma-1/metabolismo , Ubiquitina/metabolismo
12.
Dev Cell ; 56(9): 1313-1325.e7, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33891898

RESUMO

Cells sense and respond to extracellular mechanical cues through cell-matrix adhesions. Interestingly, the maturation of focal adhesions (FAs) is reciprocally force dependent. How biomechanical cues dictate the status of cell motility and how FAs spatial temporally coordinate force sensing and self-organization remain enigmatic. Here, we identify that LIMD1, a member of the LIM domain scaffolding proteins, undergoes force-sensitive condensation at the FAs. We also unveil that the multivalent interactions of LIMD1 intrinsically disordered region (IDR) and the LIM domains concertedly drive this phase transition under the regulation of phosphorylation. Intriguingly, formation of condensed LIMD1 protein compartments is sufficient to specifically enrich and localize late FA proteins. We further discover that LIMD1 regulates cell spreading, maintains FA dynamics and cellular contractility, and is critical for durotaxis-the ability of cells to crawl along gradients of substrate stiffness. Our results suggest a model that recruitment of LIMD1 to the FAs, via mechanical force triggered inter-molecular interaction, serves as a phase separation hub to assemble and organize matured FAs, thus allowing for efficient mechano-transduction and cell migration.


Assuntos
Movimento Celular , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Mecanotransdução Celular , Animais , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Paxilina/metabolismo , Fosforilação
13.
Nat Commun ; 12(1): 1491, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674598

RESUMO

Abnormally formed FUS/EWS/TAF15 (FET) fusion oncoproteins are essential oncogenic drivers in many human cancers. Interestingly, at the molecular level, they also form biomolecular condensates at specific loci. However, how these condensates lead to gene transcription and how features encoded in the DNA element regulate condensate formation remain unclear. Here, we develop an in vitro single-molecule assay to visualize phase separation on DNA. Using this technique, we observe that FET fusion proteins undergo phase separation at target binding loci and the phase separated condensates recruit RNA polymerase II and enhance gene transcription. Furthermore, we determine a threshold number of fusion-binding DNA elements that can enhance the formation of FET fusion protein condensates. These findings suggest that FET fusion oncoprotein promotes aberrant gene transcription through loci-specific phase separation, which may contribute to their oncogenic transformation ability in relevant cancers, such as sarcomas and leukemia.


Assuntos
Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transcrição Gênica , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , RNA Polimerase II/metabolismo , Proteína EWS de Ligação a RNA , Proteína FUS de Ligação a RNA
14.
Nat Chem Biol ; 17(5): 549-557, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33633378

RESUMO

How aerobic organisms exploit inevitably generated but potentially dangerous reactive oxygen species (ROS) to benefit normal life is a fundamental biological question. Locally accumulated ROS have been reported to prime stem cell differentiation. However, the underlying molecular mechanism is unclear. Here, we reveal that developmentally produced H2O2 in plant shoot apical meristem (SAM) triggers reversible protein phase separation of TERMINATING FLOWER (TMF), a transcription factor that times flowering transition in the tomato by repressing pre-maturation of SAM. Cysteine residues within TMF sense cellular redox to form disulfide bonds that concatenate multiple TMF molecules and elevate the amount of intrinsically disordered regions to drive phase separation. Oxidation triggered phase separation enables TMF to bind and sequester the promoter of a floral identity gene ANANTHA to repress its expression. The reversible transcriptional condensation via redox-regulated phase separation endows aerobic organisms with the flexibility of gene control in dealing with developmental cues.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , RNA de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Solanum lycopersicum/genética , Agrobacterium/genética , Agrobacterium/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hidroponia/métodos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Oxirredução , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Protoplastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Espécies Reativas de Oxigênio/uso terapêutico , S-Adenosilmetionina/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transformação Genética
15.
Anal Chem ; 93(5): 2988-2995, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33512148

RESUMO

The formation of biomolecular condensates is driven by liquid-liquid phase separation, which is prevalent in cells to govern crucial cellular functions. However, understanding the properties of phase-separated condensates remains very challenging for the lack of suitable techniques. Here, we report a photoluminescence lifetime imaging method for real-time monitoring of phase-separated condensates, both in vitro and in living cells, using a microsecond-scale photoluminescence lifetime probe based on iridium complex. The probe has a large Stokes shift, excellent cell permeability, and minimal cell autofluorescence interference. With this method, the dynamic process of phase separation of fused in sarcoma protein has been well explored, showing high spatiotemporal resolution and high throughput. Beginning with initial formation, the protein droplets get bigger and more viscous, and then a final maturation to solidified aggregates has been characterized. This study paves the path for a deeper understanding of the properties of phase-separated biomolecular condensates.


Assuntos
Irídio , Proteínas
16.
Sci China Life Sci ; 63(7): 953-985, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32548680

RESUMO

Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation (LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization, gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin- and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre- and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.


Assuntos
Membrana Celular/metabolismo , Organelas/metabolismo , Animais , Autofagia , Fenômenos Fisiológicos Celulares , Cromatina/metabolismo , Expressão Gênica , Humanos , Cinética , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Transição de Fase , Dobramento de Proteína , Proteínas , Proteólise , Propriedades de Superfície
17.
Trends Biochem Sci ; 45(6): 457-458, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32413321

RESUMO

Chromatin readers are important intermediaries linking epigenetic information and biological phenotypes. Many diseases are caused by mutations in epigenetic readers. Recently, a study by Wan et al. uncovered that cancer-associated mutations promote self-association of eleven-nineteen-leukemia protein (ENL), leading to abnormal condensates, elevated gene expression, and impaired cell fate determination.


Assuntos
Cromatina , Mutação com Ganho de Função , Diferenciação Celular , Mutação
18.
J Biol Chem ; 295(33): 11420-11434, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32461254

RESUMO

Modification-dependent and -independent biomolecular interactions, including protein-protein, protein-DNA/RNA, protein-sugar, and protein-lipid interactions, play crucial roles in all cellular processes. Dysregulation of these biomolecular interactions or malfunction of the associated enzymes results in various diseases; therefore, these interactions and enzymes are attractive targets for therapies. High-throughput screening can greatly facilitate the discovery of drugs for these targets. Here, we describe a biomolecular interaction detection method, called phase-separated condensate-aided enrichment of biomolecular interactions in test tubes (CEBIT). The readout of CEBIT is the selective recruitment of biomolecules into phase-separated condensates harboring their cognate binding partners. We tailored CEBIT to detect various biomolecular interactions and activities of biomolecule-modifying enzymes. Using CEBIT-based high-throughput screening assays, we identified known inhibitors of the p53/MDM2 (MDM2) interaction and of the histone methyltransferase, suppressor of variegation 3-9 homolog 1 (SUV39H1), from a compound library. CEBIT is simple and versatile, and is likely to become a powerful tool for drug discovery and basic biomedical research.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Mapeamento de Interação de Proteínas/métodos , Descoberta de Drogas/métodos , Humanos , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Transição de Fase , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
19.
Nature ; 483(7389): 336-40, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22398450

RESUMO

Cells are organized on length scales ranging from ångström to micrometres. However, the mechanisms by which ångström-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Transição de Fase , Proteínas/química , Proteínas/metabolismo , Transdução de Sinais , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Biopolímeros/química , Biopolímeros/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Humanos , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Fosforilação , Domínios Proteicos Ricos em Prolina , Estrutura Quaternária de Proteína , Proteína Neuronal da Síndrome de Wiskott-Aldrich/química , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Domínios de Homologia de src
20.
Cell ; 140(2): 246-56, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20141838

RESUMO

Vav proteins are guanine nucleotide exchange factors (GEFs) for Rho family GTPases. They control processes including T cell activation, phagocytosis, and migration of normal and transformed cells. We report the structure and biophysical and cellular analyses of the five-domain autoinhibitory element of Vav1. The catalytic Dbl homology (DH) domain of Vav1 is controlled by two energetically coupled processes. The DH active site is directly, but weakly, inhibited by a helix from the adjacent Acidic domain. This core interaction is strengthened 10-fold by contacts of the calponin homology (CH) domain with the Acidic, pleckstrin homology, and DH domains. This construction enables efficient, stepwise relief of autoinhibition: initial phosphorylation events disrupt the modulatory CH contacts, facilitating phosphorylation of the inhibitory helix and consequent GEF activation. Our findings illustrate how the opposing requirements of strong suppression of activity and rapid kinetics of activation can be achieved in multidomain systems.


Assuntos
Proteínas Proto-Oncogênicas c-vav/química , Cristalografia por Raios X , Cinética , Modelos Moleculares , Estrutura Terciária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA