Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Acta Pharm Sin B ; 14(7): 3125-3139, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027250

RESUMO

Zhigancao decoction is a traditional prescription for treating irregular pulse and palpitations in China. As the monarch drug of Zhigancao decoction, the bioactive molecules of licorice against heart diseases remain elusive. We established the HRESIMS-guided method leading to the isolation of three novel bicyclic peptides, glycnsisitins A-C (1-3), with distinctive C-C and C-O-C side-chain-to-side-chain linkages from the roots of Glycyrrhiza uralensis (Licorice). Glycnsisitin A demonstrated stronger cardioprotective activity than glycnsisitins B and C in an in vitro model of doxorubicin (DOX)-induced cardiomyocyte injury. Glycnsisitin A treatment not only reduced the mortality of heart failure (HF) mice in a dose-dependent manner but also significantly attenuated DOX-induced cardiac dysfunction and myocardial fibrosis. Gene set enrichment analysis (GSEA) of the differentially expressed genes indicated that the cardioprotective effect of glycnsisitin A was mainly attributed to its ability to maintain iron homeostasis in the myocardium. Mechanistically, glycnsisitin A interacted with transferrin and facilitated its binding to the transferrin receptor (TFRC), which caused increased uptake of iron in cardiomyocytes. These findings highlight the key role of bicyclic peptides as bioactive molecules of Zhigancao decoction for the treatment of HF, and glycnsisitin A constitutes a promising therapeutic agent for the treatment of HF.

2.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000075

RESUMO

Iron (Fe) toxicity is a major issue adversely affecting rice production worldwide. Unfortunately, the physiological and genetic mechanisms underlying Fe toxicity tolerance in rice remain relatively unknown. In this study, we conducted a genome-wide association study using a diverse panel consisting of 551 rice accessions to identify genetic mechanisms and candidate genes associated with Fe toxicity tolerance. Of the 29 quantitative trait loci (QTL) for Fe toxicity tolerance detected on chromosomes 1, 2, 5, and 12, five (qSH_Fe5, qSFW_Fe2.3, qRRL5.1, qRSFW1.1, and qRSFW12) were selected to identify candidate genes according to haplotype and bioinformatics analyses. The following five genes were revealed as promising candidates: LOC_Os05g40160, LOC_Os05g40180, LOC_Os12g36890, LOC_Os12g36900, and LOC_Os12g36940. The physiological characteristics of rice accessions with contrasting Fe toxicity tolerance reflected the importance of reactive oxygen species-scavenging antioxidant enzymes and Fe homeostasis for mitigating the negative effects of Fe toxicity on rice. Our findings have clarified the genetic and physiological mechanisms underlying Fe toxicity tolerance in rice. Furthermore, we identified valuable genetic resources for future functional analyses and the development of Fe toxicity-tolerant rice varieties via marker-assisted selection.


Assuntos
Haplótipos , Ferro , Oryza , Locos de Características Quantitativas , Oryza/genética , Oryza/efeitos dos fármacos , Ferro/metabolismo , Ferro/toxicidade , Estudo de Associação Genômica Ampla , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Polimorfismo de Nucleotídeo Único
3.
Nat Commun ; 15(1): 3682, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693121

RESUMO

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Assuntos
Dieta Hiperlipídica , Galectina 3 , Secreção de Insulina , Células Secretoras de Insulina , Animais , Humanos , Masculino , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Galectina 3/metabolismo , Galectina 3/genética , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Eur J Med Chem ; 271: 116416, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657480

RESUMO

Targeting polo-box domain (PBD) small molecule for polo-like kinase 1 (PLK1) inhibition is a viable alternative to target kinase domain (KD), which could avoid pan-selectivity and dose-limiting toxicity of ATP-competitive inhibitors. However, their efficacy in these settings is still low and inaccessible to clinical requirement. Herein, we utilized a structure-based high-throughput virtual screen to find novel chemical scaffold capable of inhibiting PLK1 via targeting PBD and identified an initial hit molecule compound 1a. Based on the lead compound 1a, a structural optimization approach was carried out and several series of derivatives with naphthalimide structural motif were synthesized. Compound 4Bb was identified as a new potent PLK1 inhibitor with a KD value of 0.29 µM. 4Bb could target PLK1 PBD to inhibit PLK1 activity and subsequently suppress the interaction of PLK1 with protein regulator of cytokinesis 1 (PRC1), finally leading to mitotic catastrophe in drug-resistant lung cancer cells. Furthermore, 4Bb could undergo nucleophilic substitution with the thiol group of glutathione (GSH) to disturb the redox homeostasis through exhausting GSH. By regulating cell cycle machinery and increasing cellular oxidative stress, 4Bb exhibited potent cytotoxicity to multiple cancer cells and drug-resistant cancer cells. Subcutaneous and oral administration of 4Bb could effectively inhibit the growth of drug-resistant tumors in vivo, doubling the survival time of tumor bearing mice without side effects in normal tissues. Thus, our study offers an orally-available, structurally-novel PLK1 inhibitor for drug-resistant lung cancer therapy.


Assuntos
Antineoplásicos , Proteínas de Ciclo Celular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares , Naftalimidas , Quinase 1 Polo-Like , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Naftalimidas/química , Naftalimidas/farmacologia , Naftalimidas/síntese química , Humanos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Relação Estrutura-Atividade , Camundongos , Estrutura Molecular , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo
5.
Curr Eye Res ; : 1-7, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679916

RESUMO

PURPOSE: This meta-analysis discusses the effectiveness of steroid intervention before vitrectomy in patients with rhegmatogenous retinal detachment associated with choroidal detachment. METHODS: We searched PubMed, MEDLINE, EMBASE, and the Cochrane Library for randomized controlled trials and observational studies published until August 2023. We included studies involving: patients with rhegmatogenous retinal detachment associated with choroidal detachment with proliferative vitreoretinopathy; an experimental group that was not administered steroids and a control group that was administered steroids; and assessment of visual acuity, retinal reattachment rate, and complications. The heterogeneity, publication bias, and sensitivity analysis were performed to ensure the statistical power and reliability of the analysis. RESULTS: Two randomized controlled trials and four case-control studies involving 490 eyes were included in the meta-analysis. There were no significant differences in the primary and final retinal reattachment rates after surgery between the steroid and non-steroid groups (primary retinal reattachment rate: odds ratio = 1.01, 95% confidence interval = 0.63-1.63, p = .41; final retinal reattachment rate: odds ratio = 0.82, 95% confidence interval = 0.43-1.59, p = .33). There was no statistically significant difference in postoperative visual acuity improvement between the two groups (odds ratio = 1.19, confidence interval = 0.63-2.25, p = .69). In addition, subgroup analyses of different types of steroids showed that systemic and local administration of steroids had similar results for retinal reattachment rate and visual acuity improvement. CONCLUSION: Patients with rhegmatogenous retinal detachment associated with choroidal detachment who did not receive preoperative steroids achieved the same effect as patients with rhegmatogenous retinal detachment associated with choroidal detachment who did receive preoperative steroids in terms of retinal reattachment rate and visual acuity. It is recommended that patients with rhegmatogenous retinal detachment associated with choroidal detachment undergo surgery as promptly as possible.

6.
Diabetes Obes Metab ; 26(6): 2257-2266, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38497233

RESUMO

AIM: Non-alcoholic fatty liver is the most common cause of chronic liver disease. GPR40 is a potential therapeutic target for energy metabolic disorders. GPR40 is a potential therapeutic target for energy metabolic disorders. SZZ15-11 is a newly synthesized GPR40 agonist. In this study, we estimate the potency of SZZ15-11 in fatty liver treatment. METHODS: In vivo, diet-induced obese (DIO) mice received SZZ15-11 (50 mg/kg) and TAK875 (50 mg/kg) for 6 weeks. Blood glucose and lipid, hepatocyte lipid and liver morphology were analysed. In vitro, HepG2 cells and GPR40-knockdown HepG2 cells induced with 0.3 mM oleic acid were treated with SZZ15-11. Triglyceride and total cholesterol of cells were measured. At the same time, the AMPK pathway regulating triglycerides and cholesterol esters synthesis was investigated via western blot and quantitative polymerase chain reaction in both liver tissue and HepG2 cells. RESULTS: SZZ15-11 was found to not only attenuate hyperglycaemia and hyperlipidaemia but also ameliorate fatty liver disease in DIO mice. At the same time, SZZ15-11 decreased triglyceride and total cholesterol content in HepG2 cells. Whether examined in the liver of DIO mice or in HepG2 cells, SZZ15-11 upregulated AMPKα phosphorylation and then downregulated the expression of the cholesterogenic key enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase and inhibited acetyl-CoA carboxylase activity. Furthermore, SZZ15-11 promotes AMPK activity via [cAMP]i accumulation. CONCLUSION: This study confirmed that SZZ15-11, a novel GPR40 agonist, improves hyperlipidaemia and fatty liver, partially via Gs signalling and the AMPK pathway in hepatocytes.


Assuntos
Proteínas Quinases Ativadas por AMP , Homeostase , Hepatopatia Gordurosa não Alcoólica , Obesidade , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Dieta Hiperlipídica , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/metabolismo
7.
J Med Food ; 27(5): 428-436, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38526570

RESUMO

Inflammatory bowel disease, a disease featured by intestinal epithelial barrier destruction and dysfunction, has been a constant threat to animal health. The primary objective of this research was to assess the impact of the extract derived from lotus leaves (LLE) on lipopolysaccharide (LPS) induced damage to the intestines in mice, as well as to investigate the fundamental mechanism involved. The LLE was prepared using ultrasonic extraction in this experiment, and the LLE total flavonoid content was 117.02 ± 10.73 mg/g. The LLE had strong antioxidant activity in vitro, as assessed by 2, 2-diphenyl-1-picrylhydrazyl, ferric reducing antioxidant power, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) methods. In the vivo experiment, different doses of LLE (50, 100, and 200 mg/kg) were administered for 2 weeks before LPS treatment in mice. The results revealed that LLE alleviates intestinal tissue damage in LPS-induced mice. In the jejunum tissue, LLE significantly upregulated mRNA and protein expression levels of tight junction proteins, such as ZO-1, occludin, and claudin-1, and decreased the contents of the inflammatory cytokines, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α. Furthermore, the malondialdehyde and lactate dehydrogenase contents increased by LPS in the liver were significantly reduced after administration of LLE, and the total antioxidant capacity, superoxide dismutase, and reduced glutathione decreased by LPS were remarkably increased by LLE. It was found that LLE could relieve LPS-induced oxidative stress by upregulating mRNA and protein expression of Nrf2 and HO-1 in jejunum tissue. In conclusion, LLE alleviates LPS-induced intestinal damage through regulation of the Nrf2/HO-1 signal pathway to alleviate oxidative stress, reducing inflammatory factors and increasing the expression of tight junction proteins in mice.


Assuntos
Lipopolissacarídeos , Lotus , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Extratos Vegetais , Folhas de Planta , Animais , Estresse Oxidativo/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Camundongos , Folhas de Planta/química , Lotus/química , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Humanos , Intestinos/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/metabolismo
8.
Stroke ; 55(3): 725-734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38406851

RESUMO

BACKGROUND: Remote secondary neurodegeneration is associated with poststroke cognitive impairment (PSCI). Dl-3-n-butylphthalide (NBP) improves PSCI clinically. However, whether it ameliorates PSCI by alleviating secondary neurodegeneration remains uncertain. Nonhuman primates provide more relevant models than rodents for human stroke and PSCI. This study investigated the effects of NBP on PSCI and secondary neurodegeneration in cynomolgus monkeys after permanent left middle cerebral artery occlusion (MCAO). METHODS: Thirteen adult male cynomolgus monkeys were randomly assigned to sham (n=4), MCAO+placebo (n=5), and MCAO+NBP groups (n=4). The MCAO+placebo and MCAO+NBP groups received saline and NBP injections intravenously, respectively, starting at 6-hour postsurgery for 2 weeks, followed by soybean oil and NBP orally, respectively, for 10 weeks after MCAO. Infarct size was assessed at week 4 by magnetic resonance imaging. Working memory and executive function were evaluated dynamically using the delayed response task and object retrieval detour task, respectively. Neuron loss, glia proliferation, and neuroinflammation in the ipsilateral dorsal lateral prefrontal cortex, thalamus, and hippocampus were analyzed by immunostaining 12 weeks after MCAO. RESULTS: Infarcts were located in the left middle cerebral artery region, apart from the ipsilateral dorsal lateral prefrontal cortex, thalamus, or hippocampus, with no significant difference between the MCAO+placebo and MCAO+NBP group. Higher success in delayed response task was achieved at weeks 4, 8, and 12 after NBP compared with placebo treatments (P<0.05), but not in the object retrieval detour task (all P>0.05). More neurons and less microglia, astrocytes, CD68-positive microglia, tumor necrosis factor-α, and inducible NO synthase were observed in the ipsilateral dorsal lateral prefrontal cortex and thalamus after 12 weeks of NBP treatment (P<0.05), but not in the hippocampus (P>0.05). CONCLUSIONS: Our findings indicate that NBP improves working memory by alleviating remote secondary neurodegeneration and neuroinflammation in the ipsilateral dorsal lateral prefrontal cortex and thalamus after MCAO in cynomolgus monkeys.


Assuntos
Benzofuranos , Lesões Encefálicas , Neoplasias Encefálicas , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Humanos , Animais , Masculino , Macaca fascicularis , Memória de Curto Prazo , Doenças Neuroinflamatórias , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Hipocampo/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
9.
Commun Biol ; 7(1): 116, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253716

RESUMO

Intrauterine adhesion (IUA) is characterized by endometrial fibrosis. S100A8/A9 plays an important role in inflammation and fibroblast activation. However, the role of S100A8/A9 in IUA remains unclear. In this study, we collect normal and IUA endometrium to verify the expression of S100A8/A9. Human endometrial stromal cells (hEnSCs) are isolated to evaluate fibrosis progression after S100A8/A9 treatment. A porcine IUA model is established by electrocautery injury to confirm the therapeutic effect of menstrual blood-derived stromal cells (MenSCs) on IUA. Our study reveals increased S100A8/A9 expression in IUA endometrium. S100A8/A9 significantly enhances hEnSCs proliferation and upregulates fibrosis-related and inflammation-associated markers. Furthermore, S100A8/A9 induces hEnSCs fibrosis through the RAGE-JAK2-STAT3 pathway. Transplantation of MenSCs in a porcine IUA model notably enhances angiogenesis, mitigates endometrial fibrosis and downregulates S100A8/A9 expression. In summary, S100A8/A9 induces hEnSCs fibrosis via the RAGE-JAK2-STAT3 pathway, and MenSCs exhibit marked effects on endometrial restoration in the porcine IUA model.


Assuntos
Doenças Uterinas , Feminino , Humanos , Animais , Suínos , Endométrio , Calgranulina A/genética , Células Epiteliais , Inflamação , Janus Quinase 2/genética , Fator de Transcrição STAT3
10.
Nat Commun ; 15(1): 203, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172124

RESUMO

Dysregulated hematopoietic niches remodeled by leukemia cells lead to imbalances in immunological mediators that support leukemogenesis and drug resistance. Targeting immune niches may ameliorate disease progression and tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive B-ALL (Ph+ B-ALL). Here, we show that T helper type 17 (Th17) cells and IL-17A expression are distinctively elevated in Ph+ B-ALL patients. IL-17A promotes the progression of Ph+ B-ALL. Mechanistically, IL-17A activates BCR-ABL, IL6/JAK/STAT3, and NF-kB signalling pathways in Ph+ B-ALL cells, resulting in robust cell proliferation and survival. In addition, IL-17A-activated Ph+ B-ALL cells secrete the chemokine CXCL16, which in turn promotes Th17 differentiation, attracts Th17 cells and forms a positive feedback loop supporting leukemia progression. These data demonstrate an involvement of Th17 cells in Ph+ B-ALL progression and suggest potential therapeutic options for Ph+ B-ALL with Th17-enriched niches.


Assuntos
Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteínas de Fusão bcr-abl/genética , Interleucina-17/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Doença Aguda
11.
Int J Biol Macromol ; 254(Pt 1): 127639, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879580

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and is characterized by a high infiltration of tumor-associated macrophages (TAMs). TAMs contribute significantly to tumor progression by intricately interacting with tumor cells. Deeply investigating the interaction between TNBC cells and TAMs is of great importance for finding potential biomarkers and developing novel therapeutic strategies to further improve the clinical outcomes of TNBC patients. In this study, we confirmed the interplay using both 3D and 2D co-culture models. The stable-isotype labeling by amino acids in cell culture (SILAC)-based quantitative proteomics was conducted on 3D cell spheroids containing TNBC cells and macrophages to identify the potential candidate in regulating the crosstalk between TNBC and TAMs. Ras-related C3 botulinum toxin substrate 2 (RAC2) was identified as a potential molecule for further exploration, given its high expression in TNBC and positive correlation with M2 macrophage infiltration. The suppression of RAC2 inhibited TNBC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro. Meanwhile, knocking down RAC2 in TNBC cells impaired macrophage recruitment and M2 polarization. Mechanistically, RAC2 exerted its roles in TNBC cells and TAMs by regulating the activation of P65 NF-κB and P38 MAPK, while TAMs further elevated RAC2 expression and P65 NF-κB activation by secreting soluble mediators including IL-10. These findings highlight the significance of RAC2 as a crucial molecule in the crosstalk between TNBC and TAMs, suggesting it could be a promising therapeutic target in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/patologia , Neoplasias de Mama Triplo Negativas/patologia , NF-kappa B , Aminoácidos , Proteômica , Linhagem Celular Tumoral , Técnicas de Cultura de Células , Microambiente Tumoral
12.
J Sep Sci ; 47(1): e2300253, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994289

RESUMO

A method for the determination of five microplastics in agricultural soil was established by double-shot pyrolysis-gas chromatography combined with two-step extraction. First, polycarbonate (PC), polystyrene (PS), polypropylene (PP), and polyethylene (PE) were extracted from soil samples using a mixed solvent of cyclohexanone and p-xylene, and then PE terephthalate was extracted with m-methylphenol. Subsequently, PC and PE terephthalate were analyzed by thermochemolysis, and PE, PP, and PS were investigated by direct pyrolysis at 600°C. The linearity of the method was satisfactory for five microplastics and the correlation coefficients were higher than 0.97 in the respective concentration range. The limits of detection and the limits of quantification were 0.2-10.0 and 0.5-20.0 µg/g, respectively. The method provided recoveries of 75.1%-141.5%, with acceptable repeatability within 20.0%. It was a supplementary method for the existing characterization of microplastics in agricultural soil.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38158031

RESUMO

N-nitrosodimethylamine (NDMA), one of the new nitrogen-containing disinfection by-products, is potentially cytotoxic, genotoxic, and carcinogenic. Its potential toxicological effects have attracted a wide range of attention, but the mechanism is still not sufficiently understood. To better understand the toxicological mechanisms of NDMA, zebrafish embryos were exposed to NDMA from 3 h post-fertilization (hpf) to 120hpf. Mortality and malformation were significantly increased, and hatching rate, heart rate, and swimming behavior were decreased in the exposure groups. The result indicated that NDMA exposure causes cardiac and spinal developmental toxicity. mRNA levels of genes involved in the apoptotic pathway, including p53, bax, and bcl-2 were significantly affected by NDMA exposure. Moreover, the genes associated with spinal and cardiac development (myh6, myh7, nkx2.5, eph, bmp2b, bmp4, bmp9, run2a, and run2b) were significantly downregulated after treatment with NDMA. Wnt and TGF-ß signaling pathways, crucial for the development of diverse tissues and organs in the embryo and the establishment of the larval spine, were also significantly disturbed by NDMA treatment. In summary, the disinfection by-product, NDMA, exhibits spinal and cardiac developmental toxicity in zebrafish embryos, providing helpful information for comprehensive analyses and a better understanding the mechanism of its toxicity.


Assuntos
Dimetilnitrosamina , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Dimetilnitrosamina/metabolismo , Larva/metabolismo , Embrião não Mamífero/metabolismo , Coração
14.
Nat Commun ; 14(1): 7661, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996458

RESUMO

Elimination of cancer stem cells (CSCs) and reinvigoration of antitumor immunity remain unmet challenges for cancer therapy. Tumor-associated macrophages (TAMs) constitute the prominant population of immune cells in tumor tissues, contributing to the formation of CSC niches and a suppressive immune microenvironment. Here, we report that high expression of inhibitor of differentiation 1 (ID1) in TAMs correlates with poor outcome in patients with colorectal cancer (CRC). ID1 expressing macrophages maintain cancer stemness and impede CD8+ T cell infiltration. Mechanistically, ID1 interacts with STAT1 to induce its cytoplasmic distribution and inhibits STAT1-mediated SerpinB2 and CCL4 transcription, two secretory factors responsible for cancer stemness inhibition and CD8+ T cell recruitment. Reducing ID1 expression ameliorates CRC progression and enhances tumor sensitivity to immunotherapy and chemotherapy. Collectively, our study highlights the pivotal role of ID1 in controlling the protumor phenotype of TAMs and paves the way for therapeutic targeting of ID1 in CRC.


Assuntos
Neoplasias Colorretais , Macrófagos , Humanos , Macrófagos/metabolismo , Imunoterapia , Linfócitos T CD8-Positivos , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo
15.
Microbiol Spectr ; 11(6): e0023423, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800955

RESUMO

IMPORTANCE: The gut and salivary microbiomes have been widely reported to be significantly associated with a number of neurological disorders. The stability of the microbiome in the oral cavity makes it a potentially ideal sample that can be conveniently obtained for the investigation of microbiome-based pathogenesis in diseases. In the present study, we used a single-molecule long-read sequencing technique to study the distribution of the salivary microbiota in patients with pituitary adenoma (PA) and healthy individuals, as well as among four clinical phenotypes of PA. We found that the diversity of salivary microbes was more abundant in PA patients than in healthy individuals. We also observed some unique genera in different PA phenotypes. The bioinformatics-based functional predictions identified potential links between microbes and different clinical phenotypes of PA. This study improves the existing understanding of the pathogenesis of PA and may provide diagnostic and therapeutic targets for PA.


Assuntos
Microbiota , Neoplasias Hipofisárias , Humanos , Saliva , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/genética , RNA Ribossômico 16S/genética , Fenótipo
16.
Sci Rep ; 13(1): 17399, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833332

RESUMO

Phosphofructokinase, platelet (PFKP) is a rate-limiting enzyme of glycolysis that plays a decisive role in various human physio-pathological processes. PFKP has been reported to have multiple functions in different cancer types, including lung cancer and breast cancer. However, no systematic pancancer analysis of PFKP has been performed; this type of analysis could elucidate the clinical value of PFKP in terms of diagnosis, prognosis, drug sensitivity, and immunological correlation. Systematic bioinformation analysis of PFKP was performed based on several public datasets, including The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), Genotype-Tissue Expression Project (GTEx), and Human Protein Atlas (HPA). Prospective carcinogenesis of PFKP across cancers was estimated by expression analysis, effect on patient prognosis, diagnosis significance evaluation, and immunity regulation estimation. Then, pancancer functional enrichment of PFKP was also assessed through its effect on the signaling score and gene expression profile. Finally, upstream expression regulation of PFKP was explored by promoter DNA methylation and transcription factor (TF) prediction. Our analysis revealed that high expression of PFKP was found in most cancer types. Additionally, a high level of PFKP displayed a significant correlation with poor prognosis in patients across cancers. The diagnostic value of PFKP was performed based on its positive correlation with programmed cell death-ligand 1 (PD-L1). We also found an obvious immune-regulating effect of PFKP in most cancer types. PFKP also had a strong negative correlation with several cancer drugs. Finally, ectopic expression of PFKP may depend on DNA methylation and several predicated transcription factors, including the KLF (KLF transcription factor) and Sp (Sp transcription factor) families. This pancancer analysis revealed that a high expression level of PFKP might be a useful biomarker and predictor in most cancer types. Additionally, the performance of PFKP across cancers also suggested its meaningful role in cancer immunity regulation, even in immunotherapy and drug resistance. Overall, PFKP might be explored as an auxiliary monitor for pancancer early prognosis and diagnosis.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Prognóstico , Estudos Prospectivos , Resistência a Medicamentos , Fatores de Transcrição
17.
ACS Med Chem Lett ; 14(9): 1257-1265, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37736168

RESUMO

Both galectin-3 and galectin-8 are involved in cell adhesion, migration, apoptosis, angiogenesis, and inflammatory processes by recognizing galactose-containing glycoproteins. Inhibiting galectin-3/8 activities is a potential treatment for cancer and tissue fibrosis. Herein, a series of novel N-arylsulfonyl-5-aryloxy-indole-2-carboxamide derivatives was disclosed as dual inhibitors toward galectin-3 and galectin-8 C-terminal domain with Kd values of low micromolar level (Cpd53, gal-3: Kd= 4.12 µM, gal-8C: Kd= 6.04 µM; Cpd57, gal-3: Kd= 12.8 µM, gal-8C: Kd= 2.06 µM), which are the most potent and selective noncarbohydrate-based inhibitors toward gal-3/8 isoforms to date. The molecular docking investigations suggested that the unique amino acids Arg144 in galectin-3 and Ser213 in galectin-8C could contribute to their potency and selectivity. The scratch wound assay demonstrated that Cpd53 and Cpd57 were able to inhibit the MRC-5 lung fibroblast cells migration as well. This class of inhibitors could serve as a new starting point for further discovering structurally distinct gal-3 and gal-8C inhibitors to be used in cancer and tissue fibrosis treatment.

18.
J Nanobiotechnology ; 21(1): 305, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644565

RESUMO

BACKGROUND: Intrauterine adhesion (IUA) is a recurrent and refractory reproductive dysfunction disorder for which menstrual blood-derived stromal cells (MenSCs) might be a promising intervention. We reported that administration of MenSCs-derived exosomes (MenSCs-EXO) could achieve similar therapeutic effects to MenSCs transplantation, including alleviating endometrial fibrosis and improving fertility in IUA rats. The mass spectrometry sequencing result suggested that UBR4, a member of the proteasome family, was abundantly enriched in MenSCs-EXO. This study aimed to investigate the key role of UBR4 in MenSCs-EXO for the treatment of IUA and the specific molecular mechanism. RESULTS: UBR4 was lowly expressed in the endometrial stromal cells (EndoSCs) of IUA patients. MenSCs-EXO treatment could restore the morphology of IUA endometrium, reduce the extent of fibrosis, and promote endometrial and vascular proliferation. Knockdown of UBR4 in MenSCs did not affect the characteristics of exosomes but attenuated the therapeutic effect of exosomes. UBR4 in MenSCs-EXO could alleviate endometrial fibrosis by boosting YAP ubiquitination degradation and promoting YAP nuclear-cytoplasmic translocation. Moreover, P65 could bind to the UBR4 promoter region to transcriptionally promote the expression level of UBR4 in MenSCs. CONCLUSION: Our study clarified that MenSCs-EXO ameliorated endometrial fibrosis in IUA primarily by affecting YAP activity mediated through UBR4, while inflammatory signaling P65 may affect UBR4 expression in MenSCs to enhance MenSCs-EXO therapeutic effects. This revealed a novel mechanism for the treatment of IUA with MenSCs-EXO, proposing a potential option for the clinical treatment of endometrial injury.


Assuntos
Exossomos , Feminino , Animais , Ratos , Citosol , Células Epiteliais , Células Estromais , Ubiquitinação
19.
Biomed Pharmacother ; 166: 115319, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573658

RESUMO

Premature ovarian insufficiency (POI) is clinically irreversible and seriously damages female fertility. We previously demonstrated that menstrual blood stromal cells (MenSCs)-derived exosomes (EXOs) effectively improved ovarian functions in the POI rat model. In this study, we investigated whether TSP1 is the key component in EXOs to ameliorate ovarian functions and further explored the molecular mechanism of EXOs in improving granulosa cell (GCs) activities. Our results demonstrated that knockdown TSP1 significantly debilitated the therapeutic effect of EXOs on estrous cyclicity, ovarian morphology, follicle numbers and pregnancy outcomes in 4-vinylcyclohexene diepoxide (VCD) induced POI rat model. In addition, EXOs treatment significantly promoted the activities and inhibited the apoptosis of VCD induced granulosa cells in vitro. Moreover, EXOs stimulation markedly activated the phosphorylation of SMAD3(Ser425) and AKT(Ser473), up-regulated the expressions of BCL2 and MDM2 as well as down-regulated the expressions of CASPASE3, CASPASE8, P53 and BAX. All these effects were supressed by SIS3, a inhibitor of TGF1/SMAD3. Our study revealed the key role of TSP1 in EXOs in improving POI pathology, restoring ovarian functions and GCs activities, andprovided a promising basis for EXOs in the treatment of ovarian dysfunction.


Assuntos
Exossomos , Menstruação , Insuficiência Ovariana Primária , Células Estromais , Trombospondinas , Animais , Feminino , Humanos , Gravidez , Ratos , Apoptose , Exossomos/metabolismo , Células da Granulosa/metabolismo , Menstruação/sangue , Insuficiência Ovariana Primária/patologia , Insuficiência Ovariana Primária/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Smad3/metabolismo , Células Estromais/metabolismo , Trombospondinas/metabolismo , Proteína Supressora de Tumor p53/metabolismo
20.
J Cell Physiol ; 238(8): 1836-1849, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37334439

RESUMO

Quiescent cancer cells are major impediments to effective radiotherapy (RT) and exhibit limited sensitivity to traditional photon therapy. Herein, the functional role and underlying mechanism of carbon ions in overcoming the radioresistance of quiescent cervical cancer HeLa cells were determined. Briefly, serum withdrawal was used to induce synchronized quiescence in HeLa cells. Quiescent HeLa cells displayed strong radioresistance and DNA repair potential. After irradiation with carbon ions, the DNA damage repair pathway may markedly rely on error-prone nonhomologous end-joining in proliferating cells, whereas the high-precision homologous recombination pathway is more relevant in quiescent cells. This phenomenon could be explained by the ionizing radiation (IR)-induced cell cycle re-entry of quiescent cancer cells. There are three strategies for eradicating quiescent cancer cells using high-linear energy transfer (LET) carbon ions: direct cell death through complex DNA damage; apoptosis via an enhanced mitochondria-mediated intrinsic pathway; forced re-entry of quiescent cancer cells into the cell cycle, thereby improving their susceptibility to IR. Silencing ß-catenin signaling is essential for maintaining the dormant state in quiescent cells. Herein, carbon ions activated the ß-catenin pathway in quiescent cells, and inhibition of this pathway improved the resistance of quiescent HeLa cells to carbon ions by alleviating DNA damage, improving DNA damage repair, maintaining quiescent depth, and inhibiting apoptosis. Collectively, carbon ions conquer the radioresistance of quiescent HeLa cells by activating ß-catenin signaling, which provides a theoretical basis for improved therapeutic effects in patients with middle-advanced-stage cervical cancer with radioresistance.


Assuntos
Neoplasias do Colo do Útero , beta Catenina , Feminino , Humanos , Células HeLa , beta Catenina/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/radioterapia , Reparo do DNA , Carbono , Íons/farmacologia , Dano ao DNA , Tolerância a Radiação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA