Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Am J Transl Res ; 16(5): 1620-1629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883357

RESUMO

OBJECTIVE: This study was conducted to evaluate the effects of Fast-Track Surgery (FTS)-oriented care pathways on perioperative rehabilitation indicators in patients undergoing radical prostatectomy for prostate cancer. METHODS: The clinical data of 120 patients admitted to Sichuan Cancer Hospital & Institute who underwent radical prostatectomy for prostate cancer from September 2020 to October 2022 were collected and retrospectively analyzed. The patients were divided into a control group (n=60, receiving standard care) and an FTS group (n=60 patients receiving FTS-oriented care) according to different nursing methods. The perioperative rehabilitation indices were compared between the groups. RESULTS: The FTS group exhibited shorter hospitalization duration (P=0.001), postoperative anal exhaust time (P=0.012), drain removal time (P=0.007), gastrointestinal recovery time (P=0.008), and a lower total complication rate (P=0.016) compared to the control group. The scores of Visual Analog Scale (VAS) (P=0.001, P=0.003, P=0.015) and Activities of Daily Living (ADL) (P=0.011, P=0.005, P=0.007) at 24, 48, and 72 hours postoperatively were significantly lower in the FTS group than in the control group. Hospitalization cost (P=0.002) and medication expenses (P=0.016) were notably lower in the FTS group. During a 12-month follow-up, the FTS group showed a significantly lower complication rates (3.33%) compared to the control group (18.33%) (P=0.009). CONCLUSION: The application of FTS-oriented nursing pathway in patients undergoing radical prostatectomy for prostate cancer significantly enhances postoperative rehabilitation, reduces pain, lowers hospitalization and medication costs, and improves postoperative quality of life, which contributes positively to the nurse-patient relationship and patient outcome.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38937951

RESUMO

A 50-day feeding trial was conducted to evaluate the effects of mulberry leaf powder water extract (MLE) on the growth performance, immunity, antioxidant, meat quality and intestinal microbiota of yellow feather broilers. A total of 720 birds (initial body weight 40.07 ± 0.05 g) were randomly distributed into four groups with six replicates per group and 30 birds per replicate. Four diets were formulated with 0% (CON), 200 mg/kg MLE (MLE200), 400 mg/kg MLE (MLE400) and 600 mg/kg MLE (MLE600) supplementation. Results showed that the addition of 200-600 mg/kg MLE to the diet significantly increased the body weight (BW) and average daily weight gain (ADG), but feed to gain ratio (F/G) were linearly decreased (p = 0.045) as dietary MLE increased. Birds fed MLE400 had higher (p < 0.05) total antioxidant capacity (T-AOC), interleukin-10 (Il-10), secretory immunoglobulin A (SIgA) and complement 3 (C3) contents than those fed CON, whereas MLE400 had lower malondialdehyde (MDA) content than CON (p < 0.05). Analysis of 16 S rDNA indicated that supplementation with 200 mg/kg MLE increased the Shannon indices in the caecum (p < 0.05). Supplementation with MLE decreased the abundance of the phylum Proteobacteria and genus Helicobacter, and increased the abundance of the phylum Bacteroidetes in the caecum in broiler chickens (p < 0.05). The drip loss rate in the MLE600 was significantly diminished (p < 0.05), whereas the shear force was significantly elevated (p < 0.05). In summary, dietary supplementation with MLE can effectively improve growth performance, intestinal immunity, serum antioxidant capacity, meat quality and intestinal microbiota of yellow feather broilers. The most appropriate MLE supplementation level was 400 mg/kg. This study provides a practical strategy for the dietary application of MLE in yellow feather broilers.

3.
Mol Cell ; 84(8): 1570-1584.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38537638

RESUMO

Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures proper cellular function. Liquid-liquid phase separation (LLPS) of the ubiquitous PKA regulatory subunit RIα promotes cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces, combined with the cAMP-induced unleashing of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence, drive RIα condensate formation in the cytosol of mammalian cells, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in forming a non-canonical R:C complex, which recruits active PKA-C to RIα condensates to maintain low basal PKA activity in the cytosol. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico , Separação de Fases , Animais , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Transdução de Sinais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mamíferos/metabolismo
4.
Acta Biomater ; 177: 347-360, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38373525

RESUMO

Colon mucosal overexpression of reactive oxygen and nitrogen species (RONS) accelerates the development of inflammatory bowel disease (IBD) and destroys the mucosa and its barrier. IBD can be alleviated by removing RONS from the inflamed colon. The preparation of strong and efficient nanoantioxidants remains a challenge despite the development of numerous nanoantioxidants. In this paper, Zn-TA nanoparticles with fine hollow microstructure (HZn-TA) were successfully prepared and could be effectively used to treat IBD. In the first step, ZIF-8 nanoparticles were synthesized by a one-pot method. On this basis, HZn-TA nanoparticles were etched by TA, and a multifunctional nanase was developed for the treatment of IBD. RONS, including reactive oxygen species (ROS) and nitric oxide (NO), can be eliminated to increase cell survival following Hydrogen peroxide (H2O2) stimulation, including reactive oxygen species (ROS) and nitric oxide (NO with hydrogen peroxide (H2O2). In a model for preventing and delaying acute colitis, clearance of RONS has been shown to reduce intestinal inflammation in mice by reducing colon damage, proinflammatory cytokine levels, the spleen index, and body weight. Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate zonula occludens protein 1 (ZO-1) and claudin-1 expression. Based on the results of this study, HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS. Therefore, we pioneered the application of HZn-TA nanoparticles for the treatment of IBD, which are capable of clearing RONS without significant adverse effects. STATEMENT OF SIGNIFICANCE: ➢ HZn-TA nanoparticles were successfully prepared and could be effectively used to treat IBD. ➢ Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate ZO-1 and claudin-1 expression. ➢ HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS.


Assuntos
Peróxido de Hidrogênio , Doenças Inflamatórias Intestinais , Polifenóis , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxigênio/metabolismo , Zinco/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Óxido Nítrico/metabolismo , Claudina-1/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo
5.
Sci Total Environ ; 912: 169438, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38135082

RESUMO

Shewanella putrefaciens (S. putrefaciens) is one of the main microorganisms in soil bioreactors, which mainly immobilizes uranium through reduction and mineralization processes. However, the effects of elements such as phosphorus and ZVI, which may be present in the actual environment, on the mineralization and reduction processes are still not clearly understood and the environment is mostly in the absence of oxygen. In this study, we ensure that all experiments are performed in an anaerobic glove box, and we elucidate through a combination of macroscopic experimental findings and microscopic characterization that the presence of inorganic phosphates enhances the mineralization of uranyl ions on the surface of S. putrefaciens, while zero-valent iron (ZVI) facilitates the immobilization of uranium by promoting the reduction of uranium by S. putrefaciens. Interestingly, when inorganic phosphates and ZVI co-exist, both the mineralization and reduction of uranium on the bacterial surface are simultaneously enhanced. However, these two substances exhibit a certain degree of antagonism in terms of uranium immobilization by S. putrefaciens. Furthermore, it is found that the influence of pH on the mineralization and reduction of uranyl ions is far more significant than that of inorganic phosphates and ZVI. This study contributes to a better understanding of the environmental fate of uranium in real-world settings and provides valuable theoretical support for the bioremediation and risk assessment of uranium contamination.


Assuntos
Shewanella putrefaciens , Urânio , Ferro/química , Urânio/química , Fosfatos , Anaerobiose , Íons
6.
Clin Exp Med ; 23(8): 4597-4608, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37914966

RESUMO

Inflammation and nutrition related proteins participate in the development of acute myeloid leukemia (AML). It has been reported that the albumin-to-fibrinogen ratio (AFR) could serve as a prognostic indicator in patients with malignancy, but the precise relevance of AML is unclear. This study aimed to evaluate the effect of AFR on survival prognosis in patients with AML. We analyzed 227 patients newly diagnosed with non-M3 AML. AFR was calculated as albumin divided by fibrinogen. Based on the cutoff point from X-tile program, patients were divided into AFR-high (38.8%) and AFR-low (61.2%) groups. AFR-low group showed a poorer complete remission rate (P < 0.001) and median time to relapse (P = 0.026), while the mortality was higher (P = 0.009) than AFR-high ones. According to the log-rank test, AFR-low group had shorter OS (P < 0.001) and DFS (P = 0.034). Multivariate analysis identified AFR, ELN risk, bone marrow transplant, and hemoglobin as independent prognostic variables associated with OS. A visualized nomogram for predicting OS was performed. The C-index (0.75), calibration plots, and decision curve analyses of new model showed better discrimination, calibration, and net benefits than the ELN risk model. The time-dependent receiver operating characteristic (ROC) curve of 1-, 2-, and 3-year also functioned well (AUC, 0.81, 0.93 and 0.90, respectively). Our study provided a comprehensive view of AFR which could be an independent prognostic indicator in AML patients. The prognostic model utilized readily available information from ordinary clinical practice to improve predictive performance, identify risks, and assist in therapeutic decision-making.


Assuntos
Fibrinogênio , Leucemia Mieloide Aguda , Humanos , Prognóstico , Albuminas/metabolismo , Nomogramas , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia
7.
bioRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168176

RESUMO

Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures the specific execution of various cellular functions. Liquid-liquid phase separation (LLPS) of the ubiquitously expressed PKA regulatory subunit RIα was recently identified as a major driver of cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces combined with the cAMP-induced release of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence are required to drive RIα condensate formation in cytosol, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in the formation of a non-canonical R:C complex, which serves to maintain low basal PKA activity in the cytosol by enabling the recruitment of active PKA-C to RIα condensates. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.

8.
Front Pharmacol ; 12: 769787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744749

RESUMO

Objective: To elucidate the oncogenic role of human telomerase reverse transcriptase (hTERT) in esophageal squamous cancer and unravel the therapeutic role and molecular mechanism of dihydroartemisinin (DHA) by targeting hTERT. Methods: The expression of hTERT in esophageal squamous cancer and the patients prognosis were analyzed by bioinformatic analysis from TCGA database, and further validated with esophageal squamous cancer tissues in our cohort. The Cell Counting Kit-8 (CCK8) and colony formation assay were used to evaluate the proliferation of esophageal squamous cancer cell lines (Eca109, KYSE150, and TE1) after hTERT overexpression or treated with indicated concentrations of DHA. Transwell migration assay and scratch assay were employed to determine the migration abilities of cancer cells. Fluorescence microscopy and flow cytometry were conducted to measure the intracellular reactive oxygen species (ROS) levels in cancer cells after treated with DHA. Moreover, RT-PCR and Western blot were performed to test the alteration of associated genes on mRNA and protein level in DHA treated esophageal squamous cancer cell lines, respectively. Furthermore, tumor-bearing nude mice were employed to evaluate the anticancer effect of DHA in vivo. Results: We found that hTERT was significantly upregulated in esophageal squamous cancer both from TCGA database and our cohort also. Overexpression of hTERT evidently promoted the proliferation and migration of esophageal squamous cancer cells in vitro. Moreover, DHA could significantly inhibit the proliferation and migration of esophageal cancer cell lines Eca109, KYSE150, and TE1 in vitro, and significantly down-regulate the expression of hTERT on both mRNA and protein level in a time- and dose-dependent manner as well. Further studies showed that DHA could induce intracellular ROS production in esophageal cancer cells and down-regulate SP1 expression, a transcription factor that bound to the promoter region of hTERT gene. Moreover, overexpression of SP1 evidently promoted the proliferation and migration of Eca109 and TE1 cells. Intriguingly, rescue experiments showed that inhibiting ROS by NAC alleviated the downregulation of SP1 and hTERT in cells treated with DHA. Furthermore, overexpression of SP1 or hTERT could attenuate the inhibition effect of DHA on the proliferation and migration of Eca109 cells. In tumor-bearing nude mice model, DHA significantly inhibited the growth of esophageal squamous cancer xenografts, and downregulated the expression of SP1 and hTERT protein, while no side effects were observed from heart, kidney, liver, and lung tissues by HE stain. Conclusion: hTERT plays an oncogenic role in esophageal squamous cancer and might be a therapeutic target of DHA through regulating ROS/SP1 pathway.

9.
Ann Transplant ; 26: e933365, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635633

RESUMO

BACKGROUND High-dose chemotherapy followed by autologous stem cell transplantation (HDT/ASCT) plays a crucial role in the therapy of patients with lymphoma. This retrospective study aimed to analyze prognostic factors in patients undergoing HDT/ASCT for lymphoma. MATERIAL AND METHODS We included patients with lymphoma who underwent HDT/ASCT at our center. Time-to-event outcomes, including progression-free survival (PFS) and overall survival (OS), were analyzed with the Kaplan-Meier method and log-rank test. Receiver operating characteristic (ROC) curve analysis and Cox proportional hazard regression analysis were performed to explore the prognostic value of different factors. RESULTS A total of 113 patients with lymphoma were included. Patients with low serum albumin levels (<37 g/L) before transplantation had significantly lower PFS and OS (P<0.01). Albumin levels before transplantation significantly predicted early progression (progressed within 1 year) after transplantation (AUC=0.706, P=0.003). Multivariate Cox analysis indicated that low albumin level (hazard ratio [HR] 3.19, 95% confidence interval [CI] 1.54-6.63; P=0.002) and age >60 years (HR 2.92, 95% CI 1.27-6.71; P=0.012) were independent risk factors for PFS. Total protein <60 g/L was an independent risk factor for OS (HR 3.57, 95% CI 1.45-8.78; P=0.006). CONCLUSIONS Low albumin level before transplantation was an independent risk factor in patients with lymphoma undergoing HDT/ASCT. Intense care and effective maintenance therapy after transplantation are required for patients with low albumin levels.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma , Albumina Sérica Humana/análise , Humanos , Linfoma/terapia , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Transplante Autólogo
10.
Onco Targets Ther ; 14: 2563-2573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33880035

RESUMO

Cancer is one of the major threats to human health. Although humans have struggled with cancer for decades, the efficacy of treatments for most tumors is still very limited. Dihydroartemisinin (DHA) is a derivative of artemisinin, a first-line antimalarial drug originally developed in China. Beyond the anti-malarial effect, DHA has also been reported to show anti-inflammatory, anti-parasitosis, and immune-modulating properties in vitro and in vivo. Furthermore, an increasing number of studies report that DHA possesses anticancer activities on a wide range of cancer types both in vitro and in vivo, as well as enhances the efficacy of chemotherapy, targeted therapy, and even radiotherapy. However, the mechanisms of DHA on different tumors differ in various ways. In this review, we intend to summarize how DHA sensitizes cancer cells to anti-cancer therapies, highlight its molecular mechanisms and pharmacological effects in vitro and in vivo as well as in current clinical trials, and discuss potential issues concerning DHA. Hopefully, more attention will be paid to DHA as a sensitizer for cancer therapy in the future.

11.
Environ Toxicol ; 36(5): 984-993, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33381906

RESUMO

Pesticide residues have become a healthy threaten of human beings. Among the pesticides, many of them have neurotoxicity. Extracellular Regulated Protein Kinases (ERK) pathway is an important signaling pathway that regulates a variety of downstream progress. In this work, peach (PRUNUS persica) and cherry (PRUNUS cerasus) were sampled from over 300 plantations in China and assessed for the residue risk. In mechanism studies, high-risk pesticide Avermectin showed a high activity inhibiting three neurotoxicity models, SH-SY5Y, PC-12 and SK-N-SH cells. At protein levels, ERK pathway proteins and their downstream proteins were obviously down-regulated. Moreover, the effects of low-dose Avermectin can be accumulated at protein levels in the low-dose long-term chronic toxicology detection.


Assuntos
Resíduos de Praguicidas , Quinases raf , China , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Ivermectina/análogos & derivados , MAP Quinase Quinase Quinases , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases raf/metabolismo
12.
Molecules ; 25(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255804

RESUMO

Chalcone is a common scaffold found in many biologically active compounds. The chalcone scaffold was also frequently utilized to design novel anticancer agents with potent biological efficacy. Aiming to continue the research of effective chalcone derivatives to treat cancers with potent anticancer activity, fourteen amino chalcone derivatives were designed and synthesized. The antiproliferative activity of amino chalcone derivatives was studied in vitro and 5-Fu as a control group. Some of the compounds showed moderate to good activity against three human cancer cells (MGC-803, HCT-116 and MCF-7 cells) and compound 13e displayed the best antiproliferative activity against MGC-803 cells, HCT-116 cells and MCF-7 cells with IC50 values of 1.52 µM (MGC-803), 1.83 µM (HCT-116) and 2.54 µM (MCF-7), respectively which was more potent than the positive control (5-Fu). Further mechanism studies were explored. The results of cell colony formatting assay suggested compound 10e inhibited the colony formation of MGC-803 cells. DAPI fluorescent staining and flow cytometry assay showed compound 13e induced MGC-803 cells apoptosis. Western blotting experiment indicated compound 13e induced cell apoptosis via the extrinsic/intrinsic apoptosis pathway in MGC-803 cells. Therefore, compound 13e might be a valuable lead compound as antiproliferative agents and amino chalcone derivatives worth further effort to improve amino chalcone derivatives' potency.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Chalcona/síntese química , Chalcona/farmacologia , Técnicas de Química Sintética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalcona/análogos & derivados , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Relação Estrutura-Atividade
13.
Sci Rep ; 10(1): 20013, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203903

RESUMO

The study aimed to investigate the antibacterial effect and potential mechanisms of chlorogenic acid (CA) in Klebsiella pneumonia (KPN) induced infection in vitro and in vivo. 62 KPN strains were collected from the First People's Hospital of Yunnan Province. CA and CA combined Levofloxacin (LFX) were detected for KPN biofilm (BF) formation in vitro. The lung infection mice model were established by KPN. The effect of CA (500 mg/kg), LFX (50 mg/kg) and CA combined LFX (250 mg/kg + 25 mg/kg) were evaluated through the survival of mice, the changes of inflammation factors of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß and IL-6 in serum, the histopathological analysis of lung and the protein expression of NLRP3 signaling pathway in vivo. A total of 62 KPNs were isolated and identified, of which 13 (21%) strains were BF positive. 8 (13%) strains were extended spectrum ß-lactamase strains (ESBLs), and 20 (32%) strains are ESBLs biofilm positive. In vitro study, CA and LFX showed a synergistic effect on KPN biofilm formation. In vivo mice experiment, CA, especially CA + LFX treated group significantly decreased the serum levels of TNF-α, IL-1ß and IL-6, improved the survival ratio and lung pathology changes, and also reduced the protein expression of ASC, caspase 1 p20, IL-1ß and phosphor NF-κB p65. CA could effectively alleviate lung infection of KPN infected mice, and the antibacterial effection is strengthened by combined with LFX. The study provide a theroy basis for making rational and scientific antibacterial therapy strategy in clinic.


Assuntos
Antibacterianos/farmacologia , Ácido Clorogênico/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Levofloxacino/farmacologia , Animais , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Ácido Clorogênico/uso terapêutico , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/mortalidade , Levofloxacino/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/metabolismo
14.
Front Cell Dev Biol ; 8: 552020, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240872

RESUMO

BACKGROUND: Salmonella typhimurium (ST) causes several intestinal diseases. Polyphenols including chlorogenic acid (CGA) inhibit pathogenesis. OBJECTIVE: This study aimed to investigate the mechanisms of CGA in ST infection. METHODS: The intestinal pathological changes and survival rate of ST-infected mice were measured to verify the protection of CGA on ST infection. The antibacterial effects of CGA in vitro on the invasion to intestinal epithelial cells and autophagy was evaluated. The relationships among GAS5, miR-23a, and PTEN were verified. Expression of inflammation- and autophagy-related proteins was detected. RESULTS: CGA treatment alleviated pathological damage, improved the secretion disturbance of intestinal cytokines caused by ST infection, and reduced the mortality of mice. Intestinal GAS5 was upregulated after CGA treatment. LncRNA GAS5 competitively bound to miR-23a to upregulate PTEN and inhibit the p38 MAPK pathway. CGA regulated the p38 MAPK pathway through lncRNA GAS5/miR-23a/PTEN axis to promote autophagy in ST infection. The functional rescue experiments of miR-23a and PTEN further identified these effects. CONCLUSION: CGA promotes autophagy and inhibits ST infection through the GAS5/miR-23a/PTEN axis and the p38 MAPK pathway.

15.
Environ Pollut ; 265(Pt A): 114880, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32540565

RESUMO

Interactions between the intestine and the liver, the so-called 'gut-liver axis', play a crucial role in the onset of hepatic steatosis and non-alcoholic fatty liver disease. However, not much is known about the impact of environmental pollutants on the gut-liver axis and consequent hepatic steatosis. Bisphenol A (BPA), a widely used plasticiser, is an important environmental contaminant that affects gut microbiota. We hypothesised that BPA induces hepatic steatosis by promoting gut microbiota dysbiosis and activating the gut-liver axis. In this study, male CD-1 mice were fed with diet containing BPA (50 µg/kg body weight/day) for 24 weeks. Dietary exposure to BPA increased lipid contents and fat accumulation in the liver. Analysis of 16 S rRNA gene sequencing revealed that the diversity of gut microbiota reduced and the composition of gut microbiota was altered in the BPA-fed mice. Further, the abundance of Proteobacteria, a marker of dysbacteria, increased, whereas the abundance of Akkermansia, a gut microbe associated with increased gut barrier function and reduced inflammation, markedly decreased. Expression levels of intestinal tight junction proteins (zona occludens-1 and occludin) also decreased drastically, leading to increased intestinal permeability and elevated levels of endotoxins. Furthermore, BPA up-regulated the expression of Toll-like receptor 4 (TLR4) and phosphorylation of nuclear factor-kappa B (NF-κB) in the liver and increased the production of inflammatory cytokines, including interleukin-1ß, interleukin-18, tumour necrosis factor-α, and interleukin-6. Take together, our work indicated that dietary intake of BPA induced hepatic steatosis, and this was closely related to dysbiosis of gut microbiota, elevated endotoxin levels, and increased liver inflammation through the TLR4/NF-κB pathway.


Assuntos
Disbiose , Microbioma Gastrointestinal , Animais , Compostos Benzidrílicos , Fígado , Masculino , Camundongos , Fenóis
16.
Chin Med ; 15: 37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351616

RESUMO

BACKGROUND: Dihydroartemisinin (DHA), a derivate of artemisinin, is an effective antimalarial agent. DHA has been shown to exert anticancer activities to numerous cancer cells in the past few years, while the exact molecular mechanisms remain to be elucidated, especially in esophageal cancer. METHODS: Crystal violet assay was conducted to determine the cell viability of human esophageal cancer cell line Eca109 treated with DHA. Tumor-bearing nude mice were employed to evaluate the anticancer effect of DHA in vivo. Soft agar and crystal violet assays were used to measure the tumorigenicity of Eca109 cells. Flow cytometry was performed to evaluate ROS or cell cycle distribution. GFP-LC3 plasmids were delivered into Eca109 cells to visualize autophagy induced by DHA under a fluorescence microscope. The mRNA and protein levels of each gene were tested by qRT-PCR and western blot, respectively. RESULTS: Our results proved that DHA significantly reduced the viability of Eca109 cells in a dose- and time-dependent manner. Further investigation showed that DHA evidently induced cell cycle arrest at the G2/M phase in Eca109 cells. Mechanistically, DHA induced intracellular ROS generation and autophagy in Eca109 cells, while blocking ROS by an antioxidant NAC obviously inhibited autophagy. Furthermore, we found that telomere shelterin component TRF2 was down-regulated in Eca109 cells exposed to DHA through autophagy-dependent degradation, which could be rescued after autophagy was blocked by ROS inhibition. Moreover, the DNA damage response (DDR) was induced obviously in DHA treated cells. To further explore whether ROS or autophagy played a vital role in DHA induced cell cycle arrest, the cell cycle distribution of Eca109 cells was evaluated after ROS or autophagy blocking, and the results showed that autophagy, but not ROS, was essential for cell cycle arrest in DHA treated cells. CONCLUSION: Taken together, DHA showed anticancer effect on esophageal cancer cells through autophagy-dependent cell cycle arrest at the G2/M phase, which unveiled a novel mechanism of DHA as a chemotherapeutic agent, and the degradation of TRF2 followed by DDR might be responsible for this cell phenotype.

17.
Genome ; 63(4): 225-238, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32027525

RESUMO

Plant lipid transfer proteins (LTPs) are small basic proteins that play important roles in the regulation of various plant biological processes as well as the response to biotic and abiotic stresses. However, knowledge is limited on how this family of proteins is regulated in response to nematode infection in cucumber. In the present study, a total of 39 CsLTP_2 genes were identified by querying databases for cucumber-specific LTP_2 using a Hidden Markov Model approach and manual curation. The family has a five-cysteine motif (5CM) with the basic form CC-Xn-CXC-Xn-C, which differentiates it from typical nsLTPs. The members of CsLTP_2 were grouped into six families according to their structure and their phylogenetic relationships. Expression data of CsLTP_2 genes in 10 cucumber tissues indicated that they were tissue-specific genes. Two genes showed significant expression change in roots of resistant and susceptible lines during nematode infection, indicating their involvement in response to Meloidogyne incognita. This systematic analysis provides a foundation of knowledge for future studies of the biological roles of CsLTP_2 genes in cucumber in response to nematode infection and may help in the efforts to improve M. incognita-resistance breeding in cucumber.


Assuntos
Antígenos de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Cucumis sativus/genética , Resistência à Doença/genética , Genoma de Planta/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Tylenchoidea/fisiologia , Motivos de Aminoácidos , Animais , Antígenos de Plantas/genética , Proteínas de Transporte/genética , Cucumis sativus/imunologia , Cucumis sativus/parasitologia , Perfilação da Expressão Gênica , Especificidade de Órgãos , Filogenia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Alinhamento de Sequência , Sintenia
18.
J Toxicol Sci ; 44(7): 481-491, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31270304

RESUMO

Bisphenol A (BPA), an environmental chemical to which humans are commonly exposed, has been shown to increase cholesterol level but the molecular mechanism is not clear. Since cholesterol biosynthesis plays an important role in elevating cholesterol level, the aim of the present study is to explore the effects of BPA on cholesterol biosynthesis in HepG2 cells and its possible mechanisms. HepG2 cells were treated with different concentrations of BPA for 24 hr, the total cholesterol level and the activity of 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) were measured using commercial enzymatic assay kits, and the mRNA and protein expression levels of sterol regulatory element binding protein-2(SREBP-2) and HMGCR were analyzed by qPCR, Western blotting and immunofluorescence, respectively. After treating HepG2 cells with different concentrations (0.1 nM~10 µM) of BPA for 24 hr, we found that BPA at the environmentally relevant concentrations of 1 nM and 10 nM significantly increased the total cholesterol content, the activity and expression of HMGCR in HepG2 cells, but at 100 nM, 1 µM and 10 µM doses, BPA had no stimulatory effect on cholesterol biosynthesis. The whole dose-response relationship follows non-monotonic dose responses, such as an inverted U-shape. Using human SREBP-2 small interfering RNA, we further discovered that the stimulatory effects of BPA on cholesterol biosynthesis and HMGCR expression could be prevented by blockade of the SREBP-2 pathway. This study provides important implications for understanding the potential lipotoxicity of BPA exposure, and it also indicates that low-dose BPA induces hepatic cholesterol biosynthesis through upregulating the SREBP-2/HMGCR signaling pathway.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Colesterol/biossíntese , Hidroximetilglutaril-CoA Redutases/metabolismo , Fenóis/efeitos adversos , Plastificantes/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Estimulação Química , Regulação para Cima/efeitos dos fármacos
19.
Breast Cancer ; 26(6): 766-775, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31172425

RESUMO

BACKGROUND: Icariin is a major component isolated from Epimedium brevicornum Maxim and has been reported to exhibit anti-tumor activity. However, whether icariin could reverse the acquired drug resistance in breast cancer remains largely unclear. Therefore, this study was designed to explore the antitumor effects of icariin and its underlying mechanisms in a tamoxifen-resistant breast cancer cell line MCF-7/TAM. METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Lactate dehydrogenase (LDH) assay were performed to determine the effects of icariin on cell viability and cell death. Cell cycle progression and apoptosis were detected by flow cytometry analysis. Transmission electron microscopy (TEM) assay was utilized to observe cell autophagy. The downstream protein levels were measured using western blotting. RESULTS: Here, we observed that icariin treatment not only inhibited the growth of MCF-7 but also has a potential function to overcome tamoxifen resistance in MCF-7/TAM. Moreover, icariin significantly induced cell cycle G0/G1 phase arrest and apoptosis, as well as suppressed autophagy. At molecular levels, icariin treatment remarkably down-regulated the expression levels of CDK2, CDK4, Cyclin D1, Bcl-2, LC3-1, LC3-II, AGT5, Beclin-1, but upregulated the expression levels of caspase-3, PARP and p62. Most importantly, we found inhibition of autophagy via 3-MA treatment could significantly enhance the effects of icariin on cell viability and apoptosis. Enhanced autophagy via autophagy related 5 (ATG5) overexpression could partially reverse the effects of icariin on cell viability and apoptosis. CONCLUSION: These results revealed that icariin might potentially be useful as an adjuvant agent in cancer chemotherapy to enhance the effect of tamoxifen through suppression of autophagy in vitro and provide insight into the therapeutic potential of icariin for the treatment of chemo-resistant breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Tamoxifeno/efeitos adversos , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Neoplasias da Mama/tratamento farmacológico , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Epimedium/química , Feminino , Humanos , Células MCF-7 , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Moduladores Seletivos de Receptor Estrogênico/efeitos adversos , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/uso terapêutico , Transfecção
20.
Food Chem ; 245: 854-862, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29287451

RESUMO

The industry discards generous organic wastewater in sweet potato starch factory and scrap tea in tea production. A simplified procedure to recover all biochemicals from the wastewater of sweet potato starch factory and use them to make health black tea and theaflavins from scrap green tea was developed. The sweet potato wastewater was sequentially treated by isoelectric precipitation, ultrafiltration and nanofiltration to recover polyphenol oxidase (PPO), ß-amylase, and small molecular fractions, respectively. The PPO fraction can effectively transform green tea extracts into black tea with high content of theaflavins through the optimized fed-batch feeding fermentation. The PPO transformed black tea with sporamins can be used to make health black tea, or make theaflavins by fractionation with ethyl acetate. This work provides a resource- and environment-friendly approach for economically utilizing the sweet potato wastewater and the scrap tea, and making biochemical, nutrient and health products.


Assuntos
Camellia sinensis/química , Enzimas/isolamento & purificação , Alimentos , Ipomoea batatas/química , Águas Residuárias/química , Técnicas de Cultura Celular por Lotes , Biflavonoides/isolamento & purificação , Catequina/isolamento & purificação , Catecol Oxidase/isolamento & purificação , Fracionamento Químico , Fermentação , Indústria Alimentícia/métodos , Resíduos Industriais , Chá/química , Eliminação de Resíduos Líquidos/métodos , beta-Amilase/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA