Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Medicine (Baltimore) ; 103(2): e36870, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215103

RESUMO

In the present prospective cohort research, we aimed to explore the serum levels of Acyl-CoA synthetase long-chain family member 4 (ACSL4) in patients with ST-segment elevation myocardial infarction (STEMI) and its association with 1-year major adverse cardiovascular events (MACE). This prospective cohort study recruited 507 patients who underwent percutaneous coronary intervention for the treatment of STEMI at our hospital during August 2019 to July 2022. The serum ACSL4, tumor necrosis factor-α, interleukin (IL)-6, IL-1ß, and C-reactive protein levels were measured by enzyme-linked immunosorbent assay. Demographic and clinical statistics were also collected. In addition, all patients were followed up for 1 year, and patients with MACE were defined as poor prognosis group. All data used SPSS 26.0 to statistical analyses. The poor prognosis group had significantly higher age and low-density leptin cholesterol (LDLC) levels compared to the favorable prognosis group (P < .05). STEMI patients exhibited significantly elevated serum levels of ACSL4, tumor necrosis factor-α, IL-6, IL-1ß, and C-reactive protein (P < .05). Serum ACSL4 and IL-1ß levels in the poor prognosis group were remarkably enhanced compared to the favorable prognosis group. Curvilinear regression analysis demonstrated that ACSL4 was associated with LDLC and IL-1ß. Moreover, ACSL4 (B = 0.138, 95% CI 1.108-1.189, P < .001), LDLC (B = 2.317, 95% CI 5.253-19.603, P < .001), and IL-1ß (B = 0.061, 95%CI 1.008-1.122, P = .025) levels were the risk factors for STEMI patients with 1-year MACE. This study showed that the serum ACSL4 levels was remarkably elevated in STEMI patients. This study might provide new targets and a comprehensive approach to cardiovascular protection in STEMI patients.


Assuntos
Coenzima A Ligases , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Proteína C-Reativa , Coenzima A Ligases/sangue , Coenzima A Ligases/química , Coração , Intervenção Coronária Percutânea/efeitos adversos , Prognóstico , Estudos Prospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Fator de Necrose Tumoral alfa
2.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887160

RESUMO

Our previous study extracted and identified an antibacterial peptide that was named NP-6. Herein, we investigated the physicochemical properties of NP-6, and elucidated the mechanisms underlying its antimicrobial activity against Staphylococcus aureus. The results showed that the hemolysis activity of NP-6 was 2.39 ± 0.13%, lower than Nisin A (3.91 ± 0.43%) at the same concentration (512 µg/mL). Negligible cytotoxicity towards RAW264.7 cells was found when the concentration of NP-6 was lower than 512 µg/mL. In addition, it could keep most of its activity in fetal bovine serum. Moreover, transmission electron microscopy, confocal laser scanning microscopy, and flow cytometry results showed that NP-6 can destroy the integrity of the bacterial cell membrane and increase the membrane permeability. Meanwhile, NP-6 had binding activity with bacterial DNA and RNA in vitro and strongly inhibited the intracellular ß-galactosidase activity of S. aureus. Our findings suggest that NP-6 could be a promising candidate against S. aureus.


Assuntos
Antibacterianos , Staphylococcus aureus , Antibacterianos/farmacologia , Bactérias , Membrana Celular , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia
3.
Carbohydr Polym ; 250: 116872, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049820

RESUMO

While of enormous scientific interests, the super-wetting materials capable of one-step separation of oils and dyes from water are rare on the market. Besides, the disposal of the used materials themselves is still a challenge, mainly ascribed to their non-biodegradation. Herein, we report an all-cellulose composite membrane that can simultaneously remove oil and dye from water. The membrane was fabricated via a simple dip-coating process during which the filter paper was coated by a cellulose hydrogel layer. This cellulose hydrogel coating was discovered to play an essential role in the separation of oil/water emulsion. Meanwhile, the incorporation of citric acid remarkably improved the mechanical and adsorption properties of the membrane as it served as both the crosslinking agent and the active species for methylene blue adsorption. This work demonstrated a new strategy on the development of fully biodegradable materials for both high-efficiency oil/water separation and dye removal.

4.
J Biol Chem ; 294(7): 2486-2499, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30567741

RESUMO

Chronic benzene exposure is associated with hematotoxicity and the development of aplastic anemia and leukemia. However, the signaling pathways underlying benzene-induced hematotoxicity remain to be defined. Here, we investigated the role of protein phosphatase 2A (PP2A) in the regulation of benzene-induced hematotoxicity in a murine model. Male mice with a hepatocyte-specific homozygous deletion of the Ppp2r1a gene (encoding PP2A Aα subunit) (HO) and matched wildtype (WT) mice were exposed to benzene via inhalation at doses of 1, 10, and 100 ppm for 28 days. Peripheral white blood cell counts and activation of bone marrow progenitors were attenuated in the HO mice, indicating that Ppp2r1a deletion protects against benzene-induced hematotoxicity. Moreover, elevation of urinary S-phenyl mercapturic acid, a benzene metabolite, was much greater in WT mice than in HO mice. Real-time exhalation analysis revealed more exhaled benzene but fewer benzene metabolites in HO mice than in WT mice, possibly because of the down-regulation of Cyp2e1, encoding cytochrome P4502E1, in hepatocytes of the HO mice. Loss-of-function screening disclosed that PP2A complexes containing the B56α subunit participate in regulating Cyp2e1 expression. Notably, PP2A-B56α suppression in HepG2 cells resulted in persistent ß-catenin phosphorylation at Ser33-Ser37-Thr41 in response to CYP2E1 agonists. In parallel, nuclear translocation of ß-catenin was inhibited, concomitant with a remarkable decrease of Cyp2e1 expression. These findings support the notion that a regulatory cascade comprising PP2A-B56α, ß-catenin, and Cyp2e1 is involved in benzene-induced hematotoxicity, providing critical insight into the role of PP2A in responses to the environmental chemicals.


Assuntos
Benzeno/toxicidade , Citocromo P-450 CYP2E1/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Citocromo P-450 CYP2E1/genética , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , Proteína Fosfatase 2/genética
5.
Toxicol Appl Pharmacol ; 358: 56-67, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30195019

RESUMO

Previous studies have demonstrated that oxidative stress is implicated in benzene-induced hematotoxicity. However, the low dose-response effects and the mechanism underlying perturbation of hematopoiesis remain to be defined. This study aims to address the role of Nrf2 pathway in mediating benzene-induced hematotoxicity. Nrf2+/+ (wildtype, Nrf2-WT) and Nrf2-/- (knockout, Nrf2-KO) mice were administrated with benzene at doses of 0.1, 1.0, 10.0, 100.0 mg/kg by oral gavage for a consecutive 4 weeks (6 times/week). As a result, benzene exposure caused a decline of WBC and lymphocyte counts in a dose-dependent manner at a dose range from 1.0 to 100.0 mg/kg, while low dose benzene induced hormesis effects. Interestingly, Nrf2 deficiency seemed to relieve the decline of peripheral blood cell counts upon benzene exposure, indicating the involvement of Nrf2 in regulation of benzene-induced hematotoxicity. The suppression of phase II enzyme expression in Nrf2-KO mice resulted in considerable reduction in detoxification indicated by the decrease of urinary S-phenylmercapturic acid (SPMA), a metabolite of benzene. Ex vivo assay revealed enhanced cytotoxicity and oxidative stress were induced by benzene in Nrf2-KO mice. Notably, the depletion of Nrf2 triggered the proliferation and differentiation of hematopoietic cells, but induced aberrant morphological changes in periphery erythrocytes and bone marrow cells, implicating the compensatory effects carried on at the expense of induction of dysfunctional blood cells. Our findings provide a new insight into a low dose-response towards benzene-induced hematotoxicity and uncover the critical role of Nrf2 pathway in mediating abnormal hematopoiesis in response to oxidative stress.


Assuntos
Benzeno/toxicidade , Hematopoese/efeitos dos fármacos , Hematopoese/fisiologia , Fator 2 Relacionado a NF-E2/deficiência , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Células HL-60 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória
6.
Oncol Lett ; 15(5): 6377-6385, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29725397

RESUMO

The present study examined the effect of diallyl disulfide (DADS) on the invasion and migration ability of HL-60 cells with a high expression of parkinsonism associated deglycase (DJ-1) in the nucleus (HHDN), and its molecular mechanism. A western blot assay was used to measure the effects of DADS and an Src inhibitor on the expression of DJ-1 and the Src signal pathway in HHDN. The effects of DADS and Src inhibitors on the invasion and migration ability of HHDN was detected using Transwell migration and invasion chamber experiments. The experiments were divided into three groups: A control group (HL-60 cells), an empty vector group and a high expression group (HHDN cells). Western blot assays revealed that the expression of DJ-1 in HHDN was inhibited in a time-dependent manner following treatment with DADS for 24, 48 and 72 h. Following DADS treatment, the expression of phosphorylated Src (p-Src) and phosphorylated Fak (p-Fak) were significantly decreased in all groups compared with the untreated groups, however the expression level of Src, Fak and integrin did not change significantly. Western blot analysis results revealed that following treatment with DADS and Src inhibitor, the expression levels of p-Src and p-Fak significantly decreased in all three groups compared with untreated groups, whereas the expression levels of Src, Fak and integrin did not change significantly. The expression of DJ-1 in HHND was inhibited in time-dependent manner following treatment with DADS and Src inhibitor for 24, 48 and 72 h. Transwell migration and invasion assay results revealed that DADS and Src inhibitors may suppress migration and invasion in leukemic cells, and a combination of the two treatments may result in more efficient suppression. DADS may downregulate DJ-1-mediated invasion and migration in leukemic cells through suppressing the Src-Fak-Integrin signaling pathway, and the Src inhibitor may enhance the antitumor effect of DADS.

7.
Gene ; 642: 505-512, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29196255

RESUMO

Cell immortalization is the initial step for cancer development. To identify the differentially expressed genes regulated by DNA methylation over the course of human primary bronchial epithelial cell (HPBECs) immortalization, an immortalized HBE cell line (HBETT) was generated via introduction of an SV40 LT and a catalytic subunit of human telomerase reverse transcriptase (hTERT) into the HPBECs. Microarrays of mRNA and DNA methylation were performed to compare the transcriptomes and DNA methylomes between these two types of cells. The results from the mRNA microarray revealed many genes whose expression changed upon cell immortalization. We identified signatures including global hypomethylation, perturbation of ECM-receptor interaction, focal adhesion, and PI3K-Akt pathways associated with cell immortalization. Moreover, we revealed 155 differentiated methylation regions (DMRs) within the CpG islands (CGIs) of 42 genes and the perturbation of several key pathways that might be involved in HBE cell immortalization. Among these genes, the hypermethylation of the plasma glutamate carboxypeptidase (PGCP) gene appeared specifically in lung cancer tissues. The inhibition of PGCP expression by promoter hypermethylation was observed in both immortal HBETT cells and benzo[a]pyrene (Bap)-transformed HBE cells. In conclusion, these findings provide new insight into the epigenetic modifications that are critical in the transition and maintenance of cell immortalization.


Assuntos
Benzo(a)pireno/toxicidade , Brônquios/patologia , Carboxipeptidases/genética , Transformação Celular Neoplásica/genética , Metilação de DNA , Neoplasias Pulmonares/genética , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Linhagem Celular , Ilhas de CpG , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Regiões Promotoras Genéticas , Transdução de Sinais
8.
Carbohydr Polym ; 175: 216-222, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917859

RESUMO

Inspired from fishscales, membranes with special surface wettability have been applied widely for the treatment of oily waste water. Herein, a novel superhydrophilic graphene oxide (GO)@electrospun cellulose nanofiber (CNF) membrane was successfully fabricated. This membrane exhibited a high separation efficiency, excellent antifouling properties, as well as a high flux for the gravity-driven oil/water separation. Moreover, the GO@CNF membrane was capable to effectively separate oil/water mixtures in a broad pH range or with a high concentration of salt, suggesting that this membrane was quite promising for future real-world practice in oil spill cleanup and oily wastewater treatment.

9.
Mol Med Rep ; 14(5): 4666-4672, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27748821

RESUMO

Diallyl disulfide (DADS) has been demonstrated to exert potent anticancer effects in vitro and in vivo. Previous studies indicate that DADS may induce the differentiation and/or apoptosis of human leukemia cells in vitro. However, the mechanisms underlying these anticancer effects remain elusive. The aim of the present study was to investigate alterations in the subcellular localization of protein deglycase DJ­1 (also known as Parkinsonism associated deglycase-7, PARK-7) in the cytoplasm, nucleus and mitochondria of human leukemia HL­60 cells induced by DADS, in order to provide novel experimental evidence for the molecular mechanisms underlying the anticancer mechanisms of DADS in leukemia cells. HL­60 cells induced by DADS were collected at different time points, and proteins from the cytoplasm, nucleus and mitochondria of the cells were isolated using specific cellular component isolation kits. The protein expression levels of DJ­1 in these subcellular fractions of HL60 cells following exposure to DADS for varying lengths of time, were determined using western blotting, immunocytochemistry and immunofluorescence techniques. Following exposure of HL­60 cells to 1.25 mg/l DADS for 8 h, the protein expression levels of DJ­1 were significantly decreased in the cytoplasm, while nuclear fractions exhibited a significant increase in DJ­1 expression when compared with untreated controls. The protein expression levels of DJ­1 in mitochondria of HL­60 cells were significantly decreased following treatment with 5 and 10 mg/l DADS. These results demonstrate that exposure of HL­60 cells to low concentrations of DADS may promote DJ­1 protein translocation from the cytoplasm to the nucleus, which suggests that DJ­1 may function as a transcription factor or cofactor binding protein in the process of cell differentiation. The expression of DJ­1 in mitochondria may be associated with induction of apoptosis in HL­60 cells treated with moderate doses of DADS.


Assuntos
Compostos Alílicos/metabolismo , Dissulfetos/metabolismo , Leucemia/metabolismo , Proteína Desglicase DJ-1/metabolismo , Compostos Alílicos/farmacologia , Dissulfetos/farmacologia , Expressão Gênica , Células HL-60 , Humanos , Imuno-Histoquímica , Espaço Intracelular , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteína Desglicase DJ-1/genética , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA